首页> 外文OA文献 >An Innovative Approach to Minimizing Uncertainty in Sediment Load Boundary Conditions for Modelling Sedimentation in Reservoirs
【2h】

An Innovative Approach to Minimizing Uncertainty in Sediment Load Boundary Conditions for Modelling Sedimentation in Reservoirs

机译:一种创新方法,最大限度地减少沉积物负荷边界条件下储层建模沉降的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A number of significant investigations have advanced our understanding of the parameters influencing reservoir sedimentation. However, a reliable modelling of sediment deposits and delta formation in reservoirs is still a challenging problem due to many uncertainties in the modelling process. Modelling performance can be improved by adjusting the uncertainty caused by sediment load boundary conditions. In our study, we diminished the uncertainty factor by setting more precise sediment load boundary conditions reconstructed using wavelet artificial neural networks for a morphodynamic model. The model was calibrated for hydrodynamics using a backward error propagation method. The proposed approach was applied to the Tarbela Reservoir located on the Indus River, in northern Pakistan. The results showed that the hydrodynamic calibration with coefficient of determination (R2) = 0.969 and Nash–Sutcliffe Efficiency (NSE) = 0.966 also facilitated good calibration in morphodynamic calculations with R2 = 0.97 and NSE = 0.96. The model was validated for the sediment deposits in the reservoir with R2 = 0.96 and NSE = 0.95. Due to desynchronization between the glacier melts and monsoon rain caused by warmer climate and subsequent decrease of 17% in sediment supply to the Tarbela dam, our modelling results showed a slight decrease in the sediment delta for the near future (until 2030). Based on the results, we conclude that our overall state-of-the-art modelling offers a significant improvement in computational time and accuracy, and could be used to estimate hydrodynamic and morphodynamic parameters more precisely for different events and poorly gauged rivers elsewhere in the world. The modelling concept could also be used for predicting sedimentation in the reservoirs under sediment load variability scenarios.
机译:许多重大调查推进了我们对影响水库沉降的参数的理解。然而,由于建模过程中的许多不确定性,储层中的沉积物沉积物和三角洲形成的可靠性仍然是一个具有挑战性的问题。通过调整由沉积物负荷边界条件引起的不确定性来改善建模性能。在我们的研究中,我们通过设置使用小波人工神经网络的形态学模型来确定更精确的沉积物载荷边界条件来减少不确定性因素。使用向后误差传播方法校准该模型的流体动力学。该拟议的方法适用于位于巴基斯坦北部的印度河上的Tarbela水库。结果表明,具有测定系数(R2)= 0.969和NASH-SUTCLIFFE(NSE)= 0.966的流体动力学校准还促进了r2 = 0.97和nse = 0.96的形态学计算的良好校准。该模型用于储层中的沉积物沉积物,R2 = 0.96和NSE = 0.95。由于在冰川熔体和季风雨之间的去同步,温暖的气候导致和随后在沉积物供应到Tarbela大坝的沉积物供应减少17%,我们的建模结果表明,沉积物达到不久的将来略有下降(直到2030年)。基于结果,我们得出结论,我们的整体最先进的建模在计算时间和准确性方面具有显着的改善,并且可以用于更准确地估算流体动力学和形态学参数,更准确地在其他地方和其他地方的较差的河流世界。建模概念还可以用于预测沉积物负荷变异性方案下储层中的沉降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号