首页> 外文OA文献 >A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification
【2h】

A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification

机译:集成了Polsar Imagery分类的稀疏和低秩子空间表示的分层全卷积网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inspired by enormous success of fully convolutional network (FCN) in semantic segmentation, as well as the similarity between semantic segmentation and pixel-by-pixel polarimetric synthetic aperture radar (PolSAR) image classification, exploring how to effectively combine the unique polarimetric properties with FCN is a promising attempt at PolSAR image classification. Moreover, recent research shows that sparse and low-rank representations can convey valuable information for classification purposes. Therefore, this paper presents an effective PolSAR image classification scheme, which integrates deep spatial patterns learned automatically by FCN with sparse and low-rank subspace features: (1) a shallow subspace learning based on sparse and low-rank graph embedding is firstly introduced to capture the local and global structures of high-dimensional polarimetric data; (2) a pre-trained deep FCN-8s model is transferred to extract the nonlinear deep multi-scale spatial information of PolSAR image; and (3) the shallow sparse and low-rank subspace features are integrated to boost the discrimination of deep spatial features. Then, the integrated hierarchical subspace features are used for subsequent classification combined with a discriminative model. Extensive experiments on three pieces of real PolSAR data indicate that the proposed method can achieve competitive performance, particularly in the case where the available training samples are limited.
机译:灵感在语义分割中的全卷积网络(FCN)的巨大成功,以及语义分割和像素逐像素偏振合成孔径雷达(POLSAR)图像分类的相似性,探索如何用FCN有效地结合唯一的偏振属性是POLSAR图像分类的有希望的尝试。此外,最近的研究表明,稀疏和低秩表示可以为分类目的传达有价值的信息。因此,本文提出了一种有效的POLSAR图像分类方案,它通过FCN自动学习的深空模式,具有稀疏和低秩的子空间特征:(1)首先引入了基于稀疏和低排序图嵌入的浅子空间学习捕获高维偏振数据的本地和全局结构; (2)预训练的深FCN-8S模型被转移以提取Polsar图像的非线性深度多尺度空间信息; (3)浅稀疏和低级子空间功能均集成以提高深层空间特征的辨别。然后,集成的分层子空间特征用于随后的分类与判别模型组合。在三个真实波兰数据上的广泛实验表明该方法可以实现竞争性能,特别是在可用培训样本有限的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号