首页> 外文OA文献 >An Improved Unauthorized Unmanned Aerial Vehicle Detection Algorithm Using Radiofrequency-Based Statistical Fingerprint Analysis
【2h】

An Improved Unauthorized Unmanned Aerial Vehicle Detection Algorithm Using Radiofrequency-Based Statistical Fingerprint Analysis

机译:基于射频的统计指纹分析改进的未经授权无人驾驶飞行器检测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unmanned aerial vehicles (UAVs) are now readily available worldwide and users can easily fly them remotely using smart controllers. This has created the problem of keeping unauthorized UAVs away from private or sensitive areas where they can be a personal or public threat. This paper proposes an improved radio frequency (RF)-based method to detect UAVs. The clutter (interference) is eliminated using a background filtering method. Then singular value decomposition (SVD) and average filtering are used to reduce the noise and improve the signal to noise ratio (SNR). Spectrum accumulation (SA) and statistical fingerprint analysis (SFA) are employed to provide two frequency estimates. These estimates are used to determine if a UAV is present in the detection environment. The data size is reduced using a region of interest (ROI), and this improves the system efficiency and improves azimuth estimation accuracy. Detection results are obtained using real UAV RF signals obtained experimentally which show that the proposed method is more effective than other well-known detection algorithms. The recognition rate with this method is close to 100% within a distance of 2.4 km and greater than 90% within a distance of 3 km. Further, multiple UAVs can be detected accurately using the proposed method.
机译:无人驾驶空中车辆(无人机)现在可以随时可用,用户可以轻松地使用智能控制器远程飞行它们。这创造了将未经授权的无人机远离私人或敏感区域的问题,他们可以成为个人或公共威胁。本文提出了一种改进的射频(RF)的方法来检测无人机。使用背景滤波方法消除杂波(干扰)。然后,使用奇异值分解(SVD)和平均滤波来降低噪声并提高信噪比(SNR)。频谱累积(SA)和统计指纹分析(SFA)被采用提供两个频率估计。这些估计用于确定检测环境中是否存在UAV。使用感兴趣区域(ROI)减少数据大小,这提高了系统效率并提高了方位估计精度。使用实验获得的真实UAV RF信号获得检测结果,其示出了所提出的方法比其他众所周知的检测算法更有效。该方法的识别率在2.4公里的距离内接近100%,在3公里范围内大于90%。此外,可以使用所提出的方法准确地检测多个无人机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号