首页> 外文OA文献 >3D-SSD: Learning hierarchical features from RGB-D images for amodal 3D object detection
【2h】

3D-SSD: Learning hierarchical features from RGB-D images for amodal 3D object detection

机译:3D-SSD:来自RGB-D图像的学习分层特征,用于Amodal 3D对象检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper aims at fast and high-accuracy amodal 3D object detections inRGB-D images, which requires a compact 3D bounding box around the whole objecteven under partial observations. To avoid the time-consuming proposalspreextraction, we propose a single end-to-end framework based on the deepneural networks which hierarchically incorporates appearance and geometricfeatures from 2.5D representation to 3D objects. The depth information hashelped on reducing the output space of 3D bounding boxes into a manageable setof 3D anchor boxes with different sizes on multiple feature layers. Atprediction time, in a convolutional fashion, the network predicts scores forcategories and adjustments for locations, sizes and orientations of each 3Danchor box, which has considered multi-scale 2D features. Experiments on thechallenging SUN RGB-D datasets show that our algorithm outperforms thestate-of-the-art by 10.2 in mAP and is 88x faster than the Deep Sliding Shape.In addition, experiments suggest our algorithm even with a smaller input imagesize performs comparably but is 454x faster than the state-of-art on NYUV2datasets.
机译:本文旨在快速和高精度的Amodal 3D对象检测INRGB-D图像,其在部分观测下需要整个Objecteven周围的紧凑3D边界盒。为避免耗时的预言支持,我们提出了一种基于深度网络的单一端到端框架,该磁性网络从分层地将外观和几何法从2.5D表示到3D对象。散列的深度信息在将3D边界框的输出空间降低到具有不同大小的3D锚框中的3D锚固盒上的多个特征层。以卷积方式,网络以卷积方式预测分类,以及对每个3D anch盒的位置,尺寸和方向的调整,其已经考虑了多尺度的2D特征。 TheChallenging Sun RGB-D数据集的实验表明,我们的算法在MAP上的10.2次占据了最重要的速度,并且比深滑动形状快88倍。此外,实验表明我们的算法也具有较小的输入图像,但是比NYUV2Datasets最先进的速度快454倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号