首页> 外文OA文献 >Determination of effective riser sleeve thermophysical properties for simulation and analysis of riser sleeve performance
【2h】

Determination of effective riser sleeve thermophysical properties for simulation and analysis of riser sleeve performance

机译:测定仿真套筒套筒热物理性能的测定及分析立管套装性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Riser sleeve thermophysical properties for simulation are developed using an inverse modeling technique. Casting experiments using riser sleeves are performed in order to measure temperatures in the liquid steel, the riser sleeve, and the sand mold. Simulations are created and designed to replicate the casting experiments. Riser sleeve material thermophysical properties are iteratively modified until agreement is achieved between the simulation and the measured data. Analyses of sleeve material performance are carried out using the developed thermophysical properties. The modulus extension factor (MEF) is used to quantify sleeve performance and is determined for all riser sleeve materials studied here. Values are found to range from 1.07 to 1.27. A sleeve materialu27s effects on casting yield are shown to depend only on the MEF and therefore a sleeveu27s exothermic or insulating properties serve only to increase the overall quality of the sleeve, expressed by the MEF, and do not independently affect the casting yield at any casting size studied here. The use of riser sleeves is shown to increase the maximum yield up to 40% for chunky castings, however increases of only 8% are observed for very rangy castings. Riser sleeve thickness is shown to be extremely influential on casting yield. Scaling the sleeve thickness by the riser diameter shows that, for a typical sleeve, an optimum riser sleeve thickness is 0.2 times the riser diameter for chunky castings. A scaled sleeve thickness of 0.1 is found to be an optimum sleeve thickness for very rangy castings. Below a scaled sleeve thickness of 0.1 sleeve performance is found to be highly sub-optimal.
机译:使用反向建模技术开发用于仿真的提升管套管热物理性质。进行使用立管套筒的铸造实验,以测量液体钢,提升管套和砂模的温度。仿真是创建和设计以复制铸造实验。提升管套材料热物理性质被迭代地修改,直到在模拟和测量数据之间实现协议。使用开发的热物理性能进行套筒材料性能的分析。模量延伸系数(MEF)用于量化套筒性能,并确定此处研究的所有提升管套管材料。值的范围为1.07至1.27。套筒材料 U27S对铸造产率的影响仅取决于MEF,因此套管 U27S放热或绝缘性能仅用于增加由MEF表示的套筒的整体质量,并且不会独立地影响铸件在这里研究的任何铸件大小的产量。使用提升管套筒的使用,厚型铸件的最大产量高达40%,然而,对于非常宽度的铸件,观察到仅8%的增加。立管套筒厚度被显示为铸造产率的极其影响。通过提升管直径缩放套筒厚度表示,对于典型的套筒,最佳的提升管套厚度为粗铸件的提升管直径的0.2倍。发现缩放套筒厚度为0.1,是非常宽度的铸件的最佳套筒厚度。低于缩放套筒厚度为0.1套筒性能,被发现高度最佳。

著录项

  • 作者

    Thomas John Williams;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号