In this note we prove the Payne-type conjecture about the behaviour of thenodal set of least energy sign-changing solutions for the equation $-Delta_p u= f(u)$ in bounded Steiner symmetric domains $Omega subset mathbb{R}^N$under the zero Dirichlet boundary conditions. The nonlinearity $f$ is assumedto be either superlinear or resonant. In the latter case, least energysign-changing solutions are second eigenfunctions of the zero Dirichlet$p$-Laplacian in $Omega$. We show that the nodal set of any least energysign-changing solution intersects the boundary of $Omega$. The proof is basedon a moving polarization argument.
展开▼
机译:在本说明书中,我们证明了关于等式$最低能量符号更改解决方案的Payne型猜想 - delta_p u = f(u)$ ineded steiner对称域$ oomega subset mathbb { r} ^ n $在零dirichlet边界条件下。非线性$ F $被认为是超线性或谐振。在后一种情况下,更低的Energysign-yours的解决方案是$ omega $的零Dirichlet $ P $ -laplacian的第二个特征功能。我们表明,任何最少的Energysign的解决方案的节点集会与$ Omega $的边界相交。证明是一种移动的极化参数。
展开▼