首页> 外文OA文献 >On the brachistochrone of a fluid-filled cylinder
【2h】

On the brachistochrone of a fluid-filled cylinder

机译:在填充流体填充圆筒的布拉氏菌中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The brachistochrone curve for a non-dissipative particle tries to maximizeinertia of the particle but for a fluid filled cylinder, increasing inertiawould amount to increased dissipative losses. Hence the trade-off betweeninertia and dissipation plays a vital role in determining the brachistochronecurve of a fluid filled cylinder. This trade-off manifests itself in the formof an integro-differential equation governing the angular acceleration of thecylinder. Here, we compute the brachistochrone curve of a fluid filled cylinderusing optimal control principles and investigate the effect of theaforementioned trade-off on the deviation of the brachistochrone curve fromthat of a non-dissipative particle. Also, we investigate the effects of thenon-dimensional parameters of the problem on the shape of the brachistochronecurve. We then analyze the stability of the time varying fluid flow in thecylinder and find an admissible region for the terminal point which wouldensure the stability of the fluid flow as the cylinder rolls along thebrachistochrone curve.
机译:用于非耗散颗粒的Brachistochrone曲线尝试颗粒的Maximizeinertia,而是用于流体填充的圆柱体,增加惯性将增加耗尽损耗。因此,在确定流体填充圆柱体的BRACHISTOCHRONERVE方面,折叠之间的权衡作用至关重要。该权衡以控制晶圆脉加速度的积分微分方程的形式表现为单独的微分方程。这里,我们计算流体填充的柱面的颅骨芯曲线曲线,并研究了诸如柔性折衷的效果对非耗散颗粒的Brachistochrone曲线的偏差。此外,我们研究了Thenon维参数对Brachistochronecurve形状的效果。然后,我们分析Thecylinder中的时变流体流动的稳定性,并找到终端点的可允许区域,其将流体流的稳定性沿着圆柱卷沿着螺旋神经曲线滚动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号