首页> 外文OA文献 >Electric vehicle battery parameter identification and SOC observability analysis: NiMH and Li‐S case studies
【2h】

Electric vehicle battery parameter identification and SOC observability analysis: NiMH and Li‐S case studies

机译:电动车电池参数识别和SoC可观察性分析:Nimh和Li-S案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, battery model identification is performed to be applied in electric vehicle battery management systems.Two case studies are investigated: nickel-metal hydride (NiMH), which is a mature battery technology, and lithium-sulphur (Li-S),a promising next-generation technology. Equivalent circuit battery model parameterisation is performed in both cases using theprediction-error minimisation algorithm applied to experimental data. Performance of a Li-S cell is also tested based on urbandynamometer driving schedule (UDDS) and the proposed parameter identification framework is applied in this case as well. Theidentification results are then validated against the exact values of the battery parameters. The use of identified parameters forbattery state-of-charge (SOC) estimation is also discussed. It is shown that the set of parameters needed can change with adifferent battery chemistry. In the case of NiMH, the battery open circuit voltage (OCV) is adequate for SOC estimation whereasLi-S battery SOC estimation is more challenging due to its unique features such as flat OCV–SOC curve. An observabilityanalysis shows that Li-S battery SOC is not fully observable and the existing methods in the literature might not be applicablefor a Li-S cell. Finally, the effect of temperature on the identification results and the observability is discussed by repeating theUDDS test at 5, 10, 20, 30, 40 and 50°C.
机译:在该研究中,进行电池模型识别以应用于电动车辆电池管理系统。研究了WO案例研究:镍金属氢化物(NiMH),即成熟电池技术和锂 - 硫(LI-S),一个有前途的下一代技术。等效电路电池模型参数在两种情况下使用应用于实验数据的预测误差最小化算法。基于UrbandAndAnamometer驾驶计划(UDD)还测试了LI-S单元的性能,并且在这种情况下也应用了所提出的参数识别框架。然后根据电池参数的确切值验证此identification结果。还讨论了使用识别的参数禁止充电状态(SOC)估计。结果表明,所需的一组参数可以随变异电池化学改变。在NIMH的情况下,电池开路电压(OCV)对于SOC估计是足够的,而SOC估计是由于其独特的特征(例如扁平OCV-SoC曲线)的独特特征,因此Li-S电池SoC估计更具挑战性。一种观察者alysis,表明Li-S电池SOC不完全可观察,并且文献中的现有方法可能不适用于LI-S细胞。最后,通过在5,10,20,30,40和50℃下重复粉末测试来讨论温度对鉴定结果的影响和可观察性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号