首页> 外文OA文献 >Wavelet-Like Transform to Optimize the Order of an Autoregressive Neural Network Model to Predict the Dissolved Gas Concentration in Power Transformer Oil from Sensor Data
【2h】

Wavelet-Like Transform to Optimize the Order of an Autoregressive Neural Network Model to Predict the Dissolved Gas Concentration in Power Transformer Oil from Sensor Data

机译:小波的变换以优化自回归神经网络模型的顺序,以预测来自传感器数据的电力变压器油中的溶解气体浓度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dissolved gas analysis (DGA) is one of the most important methods to analyze fault in power transformers. In general, DGA is applied in monitoring systems based upon an autoregressive model; the current value of a time series is regressed on past values of the same series, as well as present and past values of some exogenous variables. The main difficulty is to decide the order of the autoregressive model; this means determining the number of past values to be used. This study proposes a wavelet-like transform to optimize the order of the variables in a nonlinear autoregressive neural network to predict the in oil dissolved gas concentration (DGC) from sensor data. Daubechies wavelets of different lengths are used to create representations with different time delays of ten DGC, which are then subjected to a procedure based on principal components analysis (PCA) and Pearson’s correlation to find out the order of an autoregressive model. The representations with optimal time delays for each DGC are applied as input in a multi-layer perceptron (MLP) network with backpropagation algorithm to predict the gas at the present and future times. This approach produces better results than choosing the same time delay for all inputs, as usual. The forecasts reached an average mean absolute percentage error (MAPE) of 5.763%, 1.525%, 1.831%, 2.869%, and 5.069% for C2H2, C2H6, C2H4, CH4, and H2, respectively.
机译:溶解气体分析(DGA)是分析电力变压器故障的最重要方法之一。通常,基于自回归模型应用DGA在监控系统中;时间序列的当前值在同一系列的过去值上回归,以及一些外源变量的存在和过去的值。主要困难是决定自回归模型的顺序;这意味着确定要使用的过去值的数量。该研究提出了一种类似小波的变换,以优化非线性自回归神经网络中变量的顺序,以预测来自传感器数据的油溶解气体浓度(DGC)。 Daubechies不同长度的小波用于创建具有10个DGC的不同时间延迟的表示,然后根据主成分分析(PCA)和Pearson的相关过程来查找自回归模型的顺序。具有每个DGC的最佳时间延迟的表示作为在多层的Perceptron(MLP)网络中的输入应用,其具有反向化算法,以预测当前和未来时间的气体。这种方法产生比常规选择所有输入的相同时间延迟的结果。对于C2H2,C2H6,C2H4,CH4和H2,预测分别达到5.763%,1.525%,1.831%,2.869%和5.069%的5.763%,1.525%,5.069%。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号