首页> 外文OA文献 >An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic Eps Estimation
【2h】

An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic Eps Estimation

机译:一种改进的LIDAR数据分割与自动eps估计的改进DBSCAN方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Point cloud data segmentation, filtering, classification, and feature extraction are the main focus of point cloud data processing. DBSCAN (density-based spatial clustering of applications with noise) is capable of detecting arbitrary shapes of clusters in spaces of any dimension, and this method is very suitable for LiDAR (Light Detection and Ranging) data segmentation. The DBSCAN method needs at least two parameters: The minimum number of points minPts, and the searching radius ε. However, the parameter ε is often harder to determine, which hinders the application of the DBSCAN method in point cloud segmentation. Therefore, a segmentation algorithm based on DBSCAN is proposed with a novel automatic parameter ε estimation method—Estimation Method based on the average of k nearest neighbors’ maximum distance—with which parameter ε can be calculated on the intrinsic properties of the point cloud data. The method is based on the fitting curve of k and the mean maximum distance. The method was evaluated on different types of point cloud data: Airborne, and mobile point cloud data with and without color information. The results show that the accuracy values using ε estimated by the proposed method are 75%, 74%, and 71%, which are higher than those using parameters that are smaller or greater than the estimated one. The results demonstrate that the proposed algorithm can segment different types of LiDAR point clouds with higher accuracy in a robust manner. The algorithm can be applied to airborne and mobile LiDAR point cloud data processing systems, which can reduce manual work and improve the automation of data processing.
机译:点云数据分割,过滤,分类和特征提取是点云数据处理的主要焦点。 DBSCAN(基于密度的噪声的空间聚类)能够在任何尺寸的空间中检测在任何尺寸的空间中的任意形状,并且该方法非常适合LIDAR(光检测和测距)数据分割。 DBSCAN方法需要至少两个参数:最小点数量,以及搜索半径ε。但是,参数ε通常更难确定,阻碍了DBSCAN方法在点云分割中的应用。因此,提出了一种基于DBSCAN的基于DBSCAN的分割算法,其基于K最近邻居的最大距离的平均值的新型自动参数ε估计方法估计方法 - 与点云数据的内在特性计算参数ε。该方法基于K的拟合曲线和平均最大距离。该方法在不同类型的点云数据:空中和移动点云数据上进行评估,并且没有颜色信息。结果表明,使用所提出的方法估计的使用ε的精度值为75%,74%和71%,其高于使用较小或大于估计的参数的值。结果表明,所提出的算法可以以稳健的方式将不同类型的激光脉云分段为更高的精度。该算法可以应用于机载和移动LIDAR点云数据处理系统,可以减少手动工作并改善数据处理的自动化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号