首页> 外文OA文献 >Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge
【2h】

Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge

机译:通过主动诱导专家知识改善基于基于基于学科的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting the efficacy of a drug for a given individual, usinghigh-dimensional genomic measurements, is at the core of precision medicine.However, identifying features on which to base the predictions remains achallenge, especially when the sample size is small. Incorporating expertknowledge offers a promising alternative to improve a prediction model, butcollecting such knowledge is laborious to the expert if the number of candidatefeatures is very large. We introduce a probabilistic model that can incorporateexpert feedback about the impact of genomic measurements on the sensitivity ofa cancer cell for a given drug. We also present two methods to intelligentlycollect this feedback from the expert, using experimental design andmulti-armed bandit models. In a multiple myeloma blood cancer data set (n=51),expert knowledge decreased the prediction error by 8%. Furthermore, theintelligent approaches can be used to reduce the workload of feedbackcollection to less than 30% on average compared to a naive approach.
机译:预测药物对给定个体的药物的功效,使用高尺寸基因组测量,是精密药物的核心。然而,为了识别基础预测的特征仍然是achalleng,特别是当样本大小很小时。结合ExpertKnowledge提供了一个有希望的替代方案来改进预测模型,如果候选者的数量非常大,则会对专家进行费力的知识。我们介绍了一种概率模型,可以包含关于基因组测量对给定药物癌细胞敏感性的影响的反馈。我们还使用实验设计和武装强盗模型来提出两种方法来智能地从专家提供专家的反馈。在多骨髓瘤血癌数据集(n = 51)中,专家知识将预测误差减少了8%。此外,与天真的方法相比,INTELRIGENT方法可用于将反馈校集的工作量降低到小于30%。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号