首页> 外文OA文献 >From Drones to Phenotype: Using UAV-LiDAR to Detect Species and Provenance Variation in Tree Productivity and Structure
【2h】

From Drones to Phenotype: Using UAV-LiDAR to Detect Species and Provenance Variation in Tree Productivity and Structure

机译:从无人机到表型:使用UAV-LIDAR检测树木生产率和结构的物种和出种变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of unmanned aerial vehicles (UAVs) for remote sensing of natural environments has increased over the last decade. However, applications of this technology for high-throughput individual tree phenotyping in a quantitative genetic framework are rare. We here demonstrate a two-phased analytical pipeline that rapidly phenotypes and filters for genetic signals in traditional and novel tree productivity and architectural traits derived from ultra-dense light detection and ranging (LiDAR) point clouds. The goal of this study was rapidly phenotype individual trees to understand the genetic basis of ecologically and economically significant traits important for guiding the management of natural resources. Individual tree point clouds were acquired using UAV-LiDAR captured over a multi-provenance common-garden restoration field trial located in Tasmania, Australia, established using two eucalypt species (Eucalyptus pauciflora and Eucalyptus tenuiramis). Twenty-five tree productivity and architectural traits were calculated for each individual tree point cloud. The first phase of the analytical pipeline found significant species differences in 13 of the 25 derived traits, revealing key structural differences in productivity and crown architecture between species. The second phase investigated the within species variation in the same 25 structural traits. Significant provenance variation was detected for 20 structural traits in E. pauciflora and 10 in E. tenuiramis, with signals of divergent selection found for 11 and 7 traits, respectively, putatively driven by the home-site environment shaping the observed variation. Our results highlight the genetic-based diversity within and between species for traits important for forest structure, such as crown density and structural complexity. As species and provenances are being increasingly translocated across the landscape to mitigate the effects of rapid climate change, our results that were achieved through rapid phenotyping using UAV-LiDAR, raise the need to understand the functional value of productivity and architectural traits reflecting species and provenance differences in crown structure and the interplay they have on the dependent biotic communities.
机译:在过去十年中,使用无人驾驶飞行器(无人机)用于自然环境的遥感。然而,这种技术在定量遗传框架中用于高通量单个树表型的应用是罕见的。我们在这里展示了一种双相分析管道,可快速表型和过滤传统和新颖的树木生产率和源自超密集光检测和测距(LIDAR)点云的建筑物的遗传信号。本研究的目的是迅速表型单个树木,了解生态和经济上重要特征的遗传基础,对于指导自然资源管理很重要。使用UV-Lidar在澳大利亚塔斯马尼亚州塔斯马尼亚岛的多个来源共同园林恢复现场试验中获得了个人树点云,该澳大利亚州塔斯马尼亚州(桉树)建立(桉树益叶和桉树)。为每个独立的树点云计算二十五棵树生产率和建筑特征。分析管道的第一阶段发现了25个衍生性状的13个具有重要种类差异,揭示了物种之间生产力和皇冠架构的关键结构差异。第二阶段研究了相同的25个结构性状的物种变化。在E.Pauciflora和10中的10个在E. Tenuiramis中检测到显着的药物变异,分别发现发散选择11和7个特征,分别由塑造观察到的变化的本地环境推动。我们的结果突出了森林结构等特征的基于遗传的多样性,例如冠密度和结构复杂性。随着物种和培养在景观中越来越讨论,减轻气候变化快速变化的影响,我们通过使用无人驾驶员的快速表型实现的结果,提高了了解反映物种和物种的生产力和建筑特征的功能价值冠结构的差异和他们对依赖生物社区的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号