首页> 外文OA文献 >Process‐Based Climate Model Development Harnessing Machine Learning: III. The Representation of Cumulus Geometry and Their 3D Radiative Effects
【2h】

Process‐Based Climate Model Development Harnessing Machine Learning: III. The Representation of Cumulus Geometry and Their 3D Radiative Effects

机译:基于过程的气候模型开发利用机器学习:III。积云几何形状及其3D辐射效应的表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Process‐scale development, evaluation, and calibration of physically based parameterizations of clouds and radiation are powerful levers for improving weather and climate models. In a series of papers, we propose a strategy for process‐based calibration of climate models that uses machine learning techniques. It relies on systematic comparisons of single‐column versions of climate models with explicit simulations of boundary‐layer dynamics and clouds (Large‐Eddy Simulations [LES]). This paper focuses on the calibration of cloud geometry parameters (vertical overlap, horizontal heterogeneity, and cloud size) that appear in the parameterization of radiation. The solar component of a radiative transfer (RT) scheme that includes a parameterization for 3D radiative effects of clouds (SPARTACUS) is run in offline single‐column mode on an ensemble of input cloud profiles synthesized from LES outputs. The space of cloud geometry parameter values is efficiently explored by sampling a large number of parameter sets (configurations) from which radiative metrics are computed using fast surrogate models that emulate the SPARTACUS solver. The sampled configurations are evaluated by comparing these radiative metrics to reference values provided by a 3D RT Monte Carlo model. The best calibrated configurations yield better predictions of TOA and surface fluxes than the one that uses parameter values computed from the 3D cloud fields: The root‐mean‐square errors averaged over cumulus cloud fields and solar angles are reduced from ∼10 Wm−2 with LES‐derived parameters to ∼5 Wm−2 with adjusted parameters. However, the calibration of cloud geometry fails to reduce the errors on absorption, which remain around 2–4 Wm−2.
机译:摘要流程规模的开发,评估和云层参数化的云和辐射的校准是强大的杠杆,用于改善天气和气候模型。在一系列论文中,我们提出了一种基于过程的气候模型校准的策略,这些校准使用机器学习技术。它依赖于具有明确模拟边界层动态和云的单列版本的系统性比较(大涡模拟[LES])。本文重点介绍了辐射参数化中出现的云几何参数(垂直重叠,水平异质性和云大小)的校准。包括用于云(Spartacus)的3D辐射效果的参数化的辐射传输(RT)方案的太阳能分量在从LES输出合成的输入云配置文件的集合上以离线单列模式运行。云几何参数值的空间被有效地通过采样大量的参数集(配置),从该辐射指标使用计算机快,模拟三宝解算器的替代模型探讨。通过将这些辐射度量与3D RT Monte Carlo模型提供的参考值进行比较来评估采样的配置。最佳校准配置产生比使用从3D云字段计算的参数值的TOA和表面磁通量的更好预测:通过~10wm-2减少了通过云云字段和太阳角平均平均的根均方误差LES-派生参数与调整参数的~5 WM-2。但是,云几何的校准不能降低吸收的误差,该误差保持在大约2-4个Wm-2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号