首页> 外文OA文献 >A Novel Adaptive Mode Decomposition Method Based on Reassignment Vector and Its Application to Fault Diagnosis of Rolling Bearing
【2h】

A Novel Adaptive Mode Decomposition Method Based on Reassignment Vector and Its Application to Fault Diagnosis of Rolling Bearing

机译:一种基于重新分配向量的新型自适应模式分解方法及其在滚动轴承故障诊断中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To solve the problem that the random distribution of noise in the time-frequency (TF) plane largely affects the readability of TF representations, a novel signal adaptive decomposition algorithm processed in TF domain, which provides adequate information about the time-varying instantaneous frequency, is presented in this paper. The theoretical basis of this algorithm is short-time Fourier transform (STFT). The research into the algorithm comprises two steps: the TF plane denoising takes sparse low-rank matrix estimation as a priority and then achieves signal decomposition based on reassignment vector (RV). A low-rank matrix approximation scheme, which exploits the sparse properties of the TF transformation coefficient and uses non-convex penalty, is put forward to obtain clean STFT. Then, a new approach called RV, which is different from the traditional mode decomposition methods such as Empirical Mode Decomposition (EMD), is used to estimate the characteristic curve corresponding to the TF ridges of the interested modes. Based on the classical reassignment method, RV has a solid theory foundation. Moreover, it can identify different signal components such as stationary signal, modulating signal and impulse characteristic. Combining the advantages of low-rank matrix approximation approach and those of RV defined in TF plane, a novel signal adaptive decomposition method is proposed in this paper to identify fault characteristics. To illustrate the effectiveness of the method, fault signals of rolling bearing under stationary condition and time-varying speed are respectively analyzed.
机译:为了解决时间频率(TF)平面中的噪声随机分布在很大程度上影响TF表示的可读性,在TF域中处理的新型信号自适应分解算法,其提供了关于时变瞬时频率的足够信息,本文提出。该算法的理论基础是短时傅里叶变换(STFT)。该算法的研究包括两个步骤:TF平面去噪将稀疏的低秩矩阵估计作为优先级,然后基于重新分配向量(RV)实现信号分解。提出了一种低秩矩阵近似方案,其利用TF变换系数的稀疏性质并使用非凸损,以获得清洁的STFT。然后,用于RV的新方法与传统模式分解方法(例如经验模式分解(EMD)不同)用于估计与感兴趣模式的TF脊相对应的特征曲线。基于经典重新分配方法,RV具有稳固的理论基础。此外,它可以识别不同的信号分量,例如固定信号,调制信号和脉冲特性。结合低秩矩阵近似方法的优点和TF平面中定义的RV的优点,提出了一种新颖的信号自适应分解方法,以识别故障特性。为了说明该方法的有效性,分别分析了稳定条件和时变速度下的滚动轴承的故障信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号