首页> 外文OA文献 >A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning
【2h】

A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning

机译:用于半自动脑微型检测和体积分割的用户引导工具:评估机器学习的血管损伤和数据标签

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background and purpose: With extensive research efforts in place to address the clinical relevance of cerebral microbleeds (CMBs), there remains a need for fast and accurate methods to detect and quantify CMB burden. Although some computer-aided detection algorithms have been proposed in the literature with high sensitivity, their specificity remains consistently poor. More sophisticated machine learning methods appear to be promising in their ability to minimize false positives (FP) through high-level feature extraction and the discrimination of hard-mimics. To achieve superior performance, these methods require sizable amounts of precisely labelled training data. Here we present a user-guided tool for semi-automated CMB detection and volume segmentation, offering high specificity for routine use and FP labelling capabilities to ease and expedite the process of generating labelled training data. Materials and methods: Existing computer-aided detection methods reported by our group were extended to include fully-automated segmentation and user-guided CMB classification with FP labelling. The algorithm's performance was evaluated on a test set of ten patients exhibiting radiotherapy-induced CMBs on MR images. Results: The initial algorithm's base sensitivity was maintained at 86.7%. FP's were reduced to inter-rater variations and segmentation results were in 98% agreement with ground truth labelling. There was an approximate 5-fold reduction in the time users spent evaluating CMB burden with the algorithm versus without computer aid. The Intra-class Correlation Coefficient for inter-rater agreement was 0.97 CI[0.92,0.99]. Conclusions: This development serves as a valuable tool for routine evaluation of CMB burden and data labelling to improve CMB classification with machine learning. The algorithm is available to the public on GitHub (https://github.com/LupoLab-UCSF/CMB_labeler). Keywords: Cerebral microbleeds, Lesion, Vascular injury, Magnetic resonance imaging, Susceptibility weighted imaging, Brain tumor, Radiation therapy, Machine learning, Algorithm, Automated
机译:背景和目的:通过广泛的研究努力解决脑显微培养物(CMBS)的临床相关性,仍然需要快速准确的方法来检测和量化CMB负担。虽然在具有高灵敏度的文献中已经提出了一些计算机辅助检测算法​​,但它们的特异性仍然持续差。更复杂的机器学习方法似乎是希望通过高级特征提取和难以模仿的辨别来最大限度地减少假阳性(FP)。为了实现卓越的性能,这些方法需要大量的精确标记的培训数据。在这里,我们提供了一种用于半自动CMB检测和体积分割的用户引导工具,为常规使用和FP标记功能提供了高特异性,以便于缓解和加快生成标记培训数据的过程。材料和方法:我们的小组报告的现有计算机辅助检测方法扩展到包括具有FP标签的全自动分段和用户引导的CMB分类。该算法的性能是对在MR图像上表现出放射疗法诱导的CMBS的10名患者的测试组的性能。结果:初始算法的基础灵敏度保持在86.7%。 FP减少到帧间变化,分割结果与地面真理标签有98%。在使用算法与没有计算机辅助算法的时间内,在评估CMB负担的时间内减少了近似的5倍。评估间协议的类内相关系数为0.97 CI [0.92,0.99]。结论:该开发是为CMB负担和数据标签进行常规评估的宝贵工具,以改善机器学习的CMB分类。 GitHub上的公共算法可用(https://github.com/lupolab -ucsf/cmb_labeler)。关键词:脑微比物,病变,血管损伤,磁共振成像,易感性加权成像,脑肿瘤,放射治疗,机器学习,算法,自动化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号