首页> 外文OA文献 >A Non-Krylov Subspace Method for Solving Large and Sparse Linear System of Equations
【2h】

A Non-Krylov Subspace Method for Solving Large and Sparse Linear System of Equations

机译:一种求解方程大型稀疏线性系统的非Krylov子空间方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most current prevalent iterative methods can be classified into the so-calledextended Krylov subspace methods, a class of iterative methods which do notfall into this category are also proposed in this paper. Comparing withtraditional Krylov subspace methods which always depend on the matrix-vectormultiplication with a fixed matrix, the newly introduced methods(the so-called(progressively) accumulated projection methods, or AP (PAP) for short) use aprojection matrix which varies in every iteration to form a subspace from whichan approximate solution is sought. More importantly an accelerativeapproach(called APAP) is introduced to improve the convergence of PAP method.Numerical experiments demonstrate some surprisingly improved convergencebehavior. Comparison between benchmark extended Krylov subspace methods(BlockJacobi and GMRES) are made and one can also see remarkable advantage of APAP insome examples. APAP is also used to solve systems with extremelyill-conditioned coefficient matrix (the Hilbert matrix) and numericalexperiments shows that it can bring very satisfactory results even when thesize of system is up to a few thousands.
机译:目前大多数流行的迭代方法可以分为所谓的calledextended Krylov子空间方法,一类迭代方法里面做notfall这一类,本文还提出。 withtraditional Krylov子空间方法,它总是依赖于基质vectormultiplication具有固定矩阵比较,新引入的方法(所谓的(逐步)积累的投影方法,或者AP(PAP)的简称)使用aprojection矩阵在每一次迭代变化以形成从whichan近似解寻求的子空间。更重要的是一个accelerativeapproach(称为APAP)引入提高PAP method.Numerical实验收敛演示了一些令人惊讶的改进convergencebehavior。基准之间的比较扩展Krylov子空间方法(BlockJacobi和GMRES)由和一个还可以看到的APAP在一些实施例中显着的优点。 APAP还用于解决与extremelyill空调系数矩阵系统(希尔伯特矩阵)和numericalexperiments显示,它可以带来非常满意的结果,即使thesize系统的高达几十万。

著录项

  • 作者

    Wujian Peng; Qun Lin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号