首页> 外文OA文献 >SmileFinder: A Resampling-Based Approach to Evaluate Signatures of Selection from Genome-Wide Sets of Matching Allele Frequency Data in Two or More Diploid Populations
【2h】

SmileFinder: A Resampling-Based Approach to Evaluate Signatures of Selection from Genome-Wide Sets of Matching Allele Frequency Data in Two or More Diploid Populations

机译:SmileFinder:一种基于重采样的方法,用于评估两个或多个二倍体群体中等位基因频率数据匹配的全基因组匹配选择的签名

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Adaptive alleles may rise in frequency as a consequence of positive selection, creating a pattern of decreased variation in the neighboring loci, known as a selective sweep. When the region containing this pattern is compared to another population with no history of selection, a rise in variance of allele frequencies between populations is observed. One challenge presented by large genome-wide datasets is the ability to differentiate between patterns that are remnants of natural selection from those expected to arise at random and/or as a consequence of selectively neutral demographic forces acting in the population.Findings: SmileFinder is a simple program that looks for diversity and divergence patterns consistent with selection sweeps by evaluating allele frequencies in windows, including neighboring loci from two or more populations of a diploid species against the genome-wide neutral expectation. The program calculates the mean of heterozygosity and FST in a set of sliding windows of incrementally increasing sizes, and then builds a resampled distribution (the baseline) of random multi-locus sets matched to the sizes of sliding windows, using an unrestricted sampling. Percentiles of the values in the sliding windows are derived from the superimposed resampled distribution. The resampling can easily be scaled from 1 K to 100 M; the higher the number, the more precise the percentiles ascribed to the extreme observed values.Conclusions: The output from SmileFinder can be used to plot percentile values to look for population diversity and divergence patterns that may suggest past actions of positive selection along chromosome maps, and to compare lists of suspected candidate genes under random gene sets to test for the overrepresentation of these patterns among gene categories. Both applications of the algorithm have already been used in published studies. Here we present a publicly available, open source program that will serve as a useful tool for preliminary scans of selection using worldwide databases of human genetic variation, as well as population datasets for many non-human species, from which such data is rapidly emerging with the advent of new genotyping and sequencing technologies.
机译:背景:由于进行了积极的选择,适应性等位基因的频率可能会升高,从而在相邻基因座中形成减少变异的模式,称为选择性扫描。当将包含该模式的区域与没有选择历史的另一个种群进行比较时,会观察到种群之间等位基因频率的方差增加。大型全基因组数据集所面临的挑战之一是如何区分自然选择的残留模式和预期随机产生的模式以及/或者由于人口中选择性中性人口力量的结果而产生的残留模式。一个简单的程序,通过评估窗口中的等位基因频率(包括来自两个或多个二倍体物种种群的邻近基因座,针对全基因组中性预期)来寻找与选择扫描一致的多样性和发散模式。该程序在一组大小递增的滑动窗口中计算杂合度和FST的平均值,然后使用不受限制的采样,建立与滑动窗口的大小匹配的随机多位点集的重新采样分布(基线)。滑动窗口中值的百分率是从叠加的重采样分布中得出的。重采样可以轻松地从1 K扩展到100 M;结论:SmileFinder的输出可用于绘制百分位数值,以寻找群体多样性和发散模式,这些可能暗示过去沿染色体图进行正选择的作用,并比较随机基因集下的可疑候选基因列表,以测试这些模式在基因类别中的代表性。该算法的两种应用都已在已发表的研究中使用。在这里,我们介绍了一个公开可用的开源程序,它将用作使用人类遗传变异的全球数据库以及许多非人类物种的种群数据集进行初步选择扫描的有用工具,随着这些数据的出现,新的基因分型和测序技术的出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号