首页> 外文OA文献 >Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds
【2h】

Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds

机译:贝叶斯最不绝对收缩和选择算子(套索)和贝丝π方法在法国Holstein和Montbéliarde品种中的基因组选择中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, the amount of available single nucleotide polymorphism (SNP) marker data has considerably increased in dairy cattle breeds, both for research purposes and for application in commercial breeding and selection programs. Bayesian methods are currently used in the genomic evaluation of dairy cattle to handle very large sets of explanatory variables with a limited number of observations. In this study, we applied 2 Bayesian methods, BayesCπ and Bayesian least absolute shrinkage and selection operator (LASSO), to 2 genotyped and phenotyped reference populations consisting of 3,940 Holstein bulls and 1,172 Montbeliarde bulls with approximately 40,000 polymorphic SNP. We compared the accuracy of the Bayesian methods for the prediction of 3 traits (milk yield, fat content, and conception rate) with pedigree-based BLUP, genomic BLUP, partial least squares (PLS) regression, and sparse PLS regression, a variable selection PLS variant. The results showed that the correlations between observed and predicted phenotypes were similar in BayesCπ (including or not pedigree information) and Bayesian LASSO for most of the traits and whatever the breed. In the Holstein breed, Bayesian methods led to higher correlations than other approaches for fat content and were similar to genomic BLUP for milk yield and to genomic BLUP and PLS regression for the conception rate. In the Montbeliarde breed, no method dominated the others, except BayesCπ for fat content. The better performances of the Bayesian methods for fat content in Holstein and Montbeliarde breeds are probably due to the effect of the DGAT1 gene. The SNP identified by the BayesCπ, Bayesian LASSO, and sparse PLS regression methods, based on their effect on the different traits of interest, were located at almost the same position on the genome. As the Bayesian methods resulted in regressions of direct genomic values on daughter trait deviations closer to 1 than for the other methods tested in this study, Bayesian methods are suggested for genomic evaluations of French dairy cattle.
机译:最近,可用的单一核苷酸多态性(SNP)标记数据的数量在乳制品养殖中具有大大增加,两者都可以用于研究目的,以及用于商业育种和选择计划的应用。贝叶斯方法目前用于奶牛的基因组评估,以处理有限数量的观察结果,处理非常大的解释性变量。在这项研究中,我们应用了2个贝叶斯方法,贝类和贝叶斯最不绝对的收缩和选择操作员(套索),到2种基因分型和表型参考种群,由3,940公牛和1,172名蒙特贝尔德公牛组成,具有约40,000个多态性SNP。我们比较了贝叶斯方法的准确性,以预测3种特征(牛奶产量,脂肪含量和概念率),基于谱系的增长,基因组细胞,部分最小二乘(PLS)回归和稀疏PLS回归,变量选择PLS变体。结果表明,观察和预测表型之间的相关性在贝斯肯π(包括或非血统信息)和贝叶斯套索中的大部分特征和任何品种。在Holstein品种中,贝叶斯方法导致比脂肪含量的其他方法更高的相关性,并且与牛奶产量的基因组结合和对基因组的基因组结合和PLS回归相似。在Montbeliarde品种中,除了Bayescπ进行脂肪含量,没有任何方法占据了其他方法。荷斯坦脂肪含量脂肪含量的更好表现可能是由于DGAT1基因的影响。基于它们对不同感兴趣的不同特征的影响,贝雅π,贝叶斯套索和稀疏PLS回归方法识别的SNP位于基因组上几乎相同的位置。由于贝叶斯方法导致对女儿特质的偏差直接基因组值的回归更接近1比在这项研究中测试的其他方法,贝叶斯方法建议的法国奶牛基因组的评价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号