首页> 外文OA文献 >Prediction of Wind Turbine-Grid Interaction Based on a Principal Component Analysis-Long Short Term Memory Model
【2h】

Prediction of Wind Turbine-Grid Interaction Based on a Principal Component Analysis-Long Short Term Memory Model

机译:基于主成分分析 - 长短短期记忆模型的风力涡轮机栅相互作用预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interaction between the gird and wind farms has significant impact on the power grid, therefore prediction of the interaction between gird and wind farms is of great significance. In this paper, a wind turbine-gird interaction prediction model based on long short term memory (LSTM) network under the TensorFlow framework is presented. First, the multivariate time series was screened by principal component analysis (PCA) to reduce the data dimensionality. Secondly, the LSTM network is used to model the nonlinear relationship between the selected sequence of wind turbine network interactions and the actual output sequence of the wind farms, it is proved that it has higher accuracy and applicability by comparison with single LSTM model, Autoregressive Integrated Moving Average (ARIMA) model and Back Propagation Neural Network (BPNN) model, the Mean Absolute Percentage Error (MAPE) is 0.617%, 0.703%, 1.397% and 3.127%, respectively. Finally, the Prony algorithm was used to analyze the predicted data of the wind turbine-grid interactions. Based on the actual data, it is found that the oscillation frequencies of the predicted data from PCA-LSTM model are basically the same as the oscillation frequencies of the actual data, thus the feasibility of the model proposed for analyzing interaction between grid and wind turbines is verified.
机译:GiRd和风电场之间的相互作用对电网产生了重大影响,因此对牙座和风电场之间的相互作用的预测具有重要意义。本文提出了一种基于TensoRFLOW框架下的长短短期存储器(LSTM)网络的风力涡轮机 - 晶晶相互作用预测模型。首先,通过主成分分析(PCA)筛选多变量时间序列,以减少数据维度。其次,LSTM网络用于模拟所选风力涡轮机网络交互与风电场的实际输出序列之间的非线性关系,证明它具有更高的准确性和适用性,通过与单一LSTM模型进行比较,自回归集成移动平均(ARIMA)模型和后传播神经网络(BPNN)模型,平均绝对百分比误差(MAPE)分别为0.617%,0.703%,1.397%和3.127%。最后,使用Proy算法来分析风力涡轮机栅相互作用的预测数据。基于实际数据,发现来自PCA-LSTM模型的预测数据的振荡频率与实际数据的振荡频率基本相同,因此建议用于分析电网和风力涡轮机之间的相互作用的模型的可行性经过验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号