首页> 中文期刊> 《应用数学进展》 >基于主成分分析和长短期记忆网络的股票价格预测

基于主成分分析和长短期记忆网络的股票价格预测

     

摘要

运用神经网络技术,建立基于主成分分析的长短期记忆神经网络(PCA-LSTM)模型并对股票开盘价格进行预测。实验采用五粮液(000858)股票,首先,利用主成分法对该股票的多个指标进行特征提取,然后利用提取的主成分建立LSTM神经网络模型,并与PCA-Elman、LSTM模型对比,结果发现PCA-LSTM模型的预测结果更好一些。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号