首页> 外文OA文献 >A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance
【2h】

A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

机译:贝叶斯模型可纠正声速风速计低估的3-D风速,增加了表面能平衡的湍流成分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sonic anemometers are the principal instruments inmicrometeorological studies of turbulence and ecosystem fluxes. Commondesigns underestimate vertical wind measurements because they lack acorrection for transducer shadowing, with no consensus on a suitablecorrection. We reanalyze a subset of data collected during field experimentsin 2011 and 2013 featuring two or four CSAT3 sonic anemometers. We introducea Bayesian analysis to resolve the three-dimensional correction by optimizingdifferences between anemometers mounted both vertically and horizontally. Agrid of 512 points (∼ ±5° resolution in wind location) isdefined on a sphere around the sonic anemometer, from which the shadowcorrection for each transducer pair is derived from a set of 138 unique statevariables describing the quadrants and borders. Using the Markov chain MonteCarlo (MCMC) method, the Bayesian model proposes new values for each statevariable, recalculates the fast-response data set, summarizes the 5 minwind statistics, and accepts the proposed new values based on the probabilitythat they make measurements from vertical and horizontal anemometers moreequivalent. MCMC chains were constructed for three different priordistributions describing the state variables: no shadow correction, theKaimal correction for transducer shadowing, and double the Kaimal correction,all initialized with 10 % uncertainty. The final posterior correction didnot depend on the prior distribution and revealed both self- andcross-shadowing effects from all transducers. After correction, the verticalwind velocity and sensible heat flux increased  ∼ 10 % with ∼ 2 % uncertainty, which was significantly higher than the Kaimalcorrection. We applied the posterior correction to eddy-covariance data fromvarious sites across North America and found that the turbulent components ofthe energy balance (sensible plus latent heat flux) increased on averagebetween 8 and 12 %, with an average 95 % credible interval between 6and 14 %. Considering this is the most common sonic anemometer in theAmeriFlux network and is found widely within FLUXNET, these results provide amechanistic explanation for much of the energy imbalance at these sites whereall terrestrial/atmospheric fluxes of mass and energy are likelyunderestimated.
机译:声速风速计是湍流和生态系统通量的微气象研究的主要仪器。 Commondesigns低估了垂直风的测量值,因为它们缺乏对换能器阴影的校正,而没有就合适的校正达成共识。我们重新分析2011年和2013年在野外实验期间收集的数据的子集,这些数据具有两个或四个CSAT3声波风速计。我们引入贝叶斯分析,通过优化垂直和水平安装的风速计之间的差异来解决三维校正问题。在声速仪周围的一个球体上定义了512个点(风位置分辨率约为±5°),从中可以从每个138个描述象限和边界的唯一状态变量中得出每个换能器对的阴影校正。贝叶斯模型使用马尔可夫链蒙特卡洛(MCMC)方法,为每个状态变量提出新值,重新计算快速响应数据集,汇总5分钟风统计数据,并根据它们从垂直方向和垂直方向进行测量的可能性接受建议的新值。水平风速计更等效。 MCMC链是针对描述状态变量的三种不同的先验分布构造的:无阴影校正,换能器阴影的Kaimal校正和Kaimal校正的两倍,所有这些都以10 %%的不确定性初始化。最终的后部矫正不取决于先验分布,并且揭示了所有换能器的自遮蔽效应和交叉遮蔽效应。校正后,垂直风速和显热通量增加〜10%,不确定度uncertainty〜2%,远高于Kaimal校正。我们对来自北美各地的涡流协方差数据进行了后校正,发现能量平衡的湍流分量(显性和潜热通量)平均增加了8%至12%,平均可信度为95%,可信区间在6%至14%之间。考虑到这是AmeriFlux网络中最常见的声波风速计,并且在FLUXNET中广泛发现,这些结果为这些地点的所有地面/大气质量和能量通量都可能被低估的许多地点的能量失衡提供了力学解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号