首页> 外文OA文献 >Non-invasive methods applied to the case of Municipal Solid Waste landfills (MSW): analysis of long-term data
【2h】

Non-invasive methods applied to the case of Municipal Solid Waste landfills (MSW): analysis of long-term data

机译:非侵入性方法应用于城市固体垃圾填埋场(MSW):长期数据分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work presents and discusses a methodology for modeling the behavior ofa landfill system in terms of biogas release to the atmosphere, relatingthis quantity to local meteorological parameters. One of the most importantgoals in the study of MSW sites lies in the optimization of biogascollection, thus minimizing its release to the atmosphere.After an introductory part, that presents the context of non-invasivemeasurements for the assessment of biogas release, the concepts of surveymapping and automatic flux monitoring are introduced.Objective of this work is to make use of time series coming from long-termflux monitoring campaigns in order to assess the trend of gas release fromthe MSW site. A key aspect in processing such data is the modeling of theeffect of meteorological parameters over such measurements; this isaccomplished by modeling the system behavior with a set of Input/Output datato characterize it without prior knowledge (system identification).The system identification approach presented here is based on an adaptivesimulation concept, where a set of Input/Output data help training a "blackbox" model, without necessarily a prior analytical knowledge. The adaptiveconcept is based on an Artificial Neural Network scheme, which is trained byreal-world data coming from a long-term monitoring campaign; such data arealso used to test the real forecasting capability of the model.In this particular framework, the technique presented in this paper appearsto be very attractive for the evaluation of biogas releases on a long termbasis, by simulating the effects of meteorological parameters over the fluxmeasurement, thus enhancing the extraction of the useful information interms of a gas "flux" quantity.
机译:这项工作提出并讨论了一种用于对垃圾填埋系统的行为进行建模的方法论,该方法将沼气释放到大气中,并将该数量与当地的气象参数相关联。在城市生活垃圾站点研究中,最重要的目标之一是优化沼气收集,从而最大程度地减少其向大气中的排放。在引言部分之后,介绍了用于评估沼气排放的非侵入性测量方法的背景,调查图的概念。这项工作的目的是利用长期流量监测活动产生的时间序列,以评估从城市固体废弃物站点释放气体的趋势。处理此类数据的一个关键方面是对此类测量中气象参数的影响进行建模;这是通过使用一组输入/输出数据对系统行为进行建模以在没有先验知识的情况下对其进行表征(系统识别)来完成的。此处介绍的系统识别方法基于自适应仿真概念,其中一组输入/输出数据有助于训练“黑匣子”模型,而无需先验分析知识。自适应概念基于人工神经网络方案,该方案由来自长期监视活动的真实世界数据进行训练;在这个特定的框架中,通过模拟气象参数对通量测量的影响,本文提出的技术对于长期评估沼气的释放似乎非常有吸引力。 ,从而增强了气体“通量”量的有用信息的提取。

著录项

  • 作者

    Scozzari A.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号