首页> 外文OA文献 >Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissionsof trace gases and light-absorbing carbon from wood and dung cooking fires,garbage and crop residue burning, brick kilns, and other sources
【2h】

Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissionsof trace gases and light-absorbing carbon from wood and dung cooking fires,garbage and crop residue burning, brick kilns, and other sources

机译:尼泊尔环境监测和源测试实验(NAMaSTE):排放木材和粪便炊具燃烧产生的痕量气体和吸光碳,垃圾和农作物残渣燃烧,砖窑和其他来源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Nepal Ambient Monitoring andSource Testing Experiment (NAMaSTE) campaign took place in and around theKathmandu Valley and in the Indo-Gangetic Plain (IGP) of southernNepal during April 2015. The source characterization phase targeted numerousimportant but undersampled (and often inefficient) combustion sources thatare widespread in the developing world such as cooking with a variety ofstoves and solid fuels, brick kilns, open burning of municipal solid waste(a.k.a. trash or garbage burning), crop residue burning, generators,irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosolmass, and detailed trace gas chemistry for the emissions from many of thesources. This paper reports the trace gas and aerosol measurements obtainedby Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS),and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field workwith a moveable lab sampling authentic sources. The primary aerosol opticalproperties reported include emission factors (EFs) for scattering andabsorption coefficients (EF , EF ,in m kg fuel burned), single scattering albedos (SSAs), and absorptionÅngström exponents (AAEs). From these data we estimate black andbrown carbon (BC, BrC) emission factors (g kg fuel burned). The tracegas measurements provide EFs (g kg) for CO, CO, CH,selected non-methane hydrocarbons up to C, a large suite of oxygenatedorganic compounds, NH, HCN, NO, SO, HCl, HF, etc. (up to ∼ 80 gases in all).The emissions varied significantly by source, and light absorption by bothBrC and BC was important for many sources. The AAE for dung-fuelcooking fires (4.63 ± 0.68) was significantly higher than forwood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires alsoemitted high levels of NH (3.00 ± 1.33 g kg), organic acids(7.66 ± 6.90 g kg), and HCN (2.01 ± 1.25 g kg), where the lattercould contribute to satellite observations of high levels of HCN in thelower stratosphere above the Asian monsoon. HCN was also emitted insignificant quantities by several non-biomass burning sources. BTEXcompounds (benzene, toluene, ethylbenzene, xylenes) were major emissionsfrom both dung- (∼ 4.5 g kg) and wood-fuel (∼ 1.5 g kg) cooking fires, and a simple method to estimate indoor exposure tothe many measured important air toxics is described. Biogas emerged as thecleanest cooking technology of approximately a dozen stove–fuel combinationsmeasured. Crop residue burning produced relatively high emissions ofoxygenated organic compounds (∼ 12 g kg) and SO (2.54 ± 1.09 g kg). Two brick kilns co-firing different amounts of biomasswith coal as the primary fuel produced contrasting results. A zigzag kilnburning mostly coal at high efficiency produced larger amounts of BC, HF,HCl, and NO, with the halogenated emissions likely coming from theclay. The clamp kiln (with relatively more biomass fuel) produced muchgreater quantities of most individual organic gases, about twice as muchBrC, and significantly more known and likely organic aerosol precursors.Both kilns were significant SO sources with their emission factorsaveraging 12.8 ± 0.2 g kg. Mixed-garbage burning producedsignificantly more BC (3.3 ± 3.88 g kg) and BTEX (∼ 4.5 g kg) emissions than in previous measurements. For all fossil fuel sources,diesel burned more efficiently than gasoline but produced larger NOand aerosol emission factors. Among the least efficient sources sampled weregasoline-fueled motorcycles during start-up and idling for which the CO EFwas on the order of ∼ 700 g kg – or about 10 times that of atypical biomass fire. Minor motorcycle servicing led to minimal if anyreduction in gaseous pollutants but reduced particulate emissions, asdetailed in a companion paper (Jayarathne et al., 2016). A smallgasoline-powered generator and an “insect repellent fire” were also amongthe sources with the highest emission factors for pollutants. Thesemeasurements begin to address the critical data gap for these important,undersampled sources, but due to their diversity and abundance, more work isneeded.
机译:2015年4月,尼泊尔加德满都谷地及周边以及尼泊尔南部的印度恒河平原(IGP)开展了尼泊尔环境监测和源测试实验(NAMaSTE)活动。源表征阶段的目标是许多重要但采样率低(通常效率低下)的燃烧源。在发展中国家普遍存在,例如使用各种炉灶和固体燃料烹饪,砖窑,城市固体废物的露天燃烧(又名垃圾焚烧),农作物残渣燃烧,发电机,灌溉泵和摩托车。 NAMaSTE首次或罕见地测量了气溶胶光学特性,气溶胶质量以及详细的痕量气体化学成分,以测量来自许多来源的排放。本文报告了基于傅里叶变换红外(FTIR)光谱,全空气采样(WAS)和光声消光计(PAX; 405和870 nm)的痕量气体和气溶胶测量结果,这些数据是通过可移动的实验室采样真实来源获得的。所报告的主要气溶胶光学性质包括散射和吸收系数(EF,EF,单位:千克燃料燃烧)的发射因子(EFs),单散射反照率(SSA)和吸收强度指数(AAE)。根据这些数据,我们估算出黑碳和黑碳(BC,BrC)排放因子(g·kg燃料燃烧)。示踪气体测量值提供了CO,CO,CH,选定的非甲烷碳氢化合物(最高至C),大量的氧化有机化合物,NH,HCN,NO,SO,HCl,HF等的EFs(g·kg)(最高〜总共80种气体)。排放量随光源而变化很大,BrC和BC的光吸收对许多光源都很重要。粪便烹饪火的AAE(4.63±0.68)显着高于木柴烹饪火的AAE(3.01±0.10)。粪便燃料大火还释放出高浓度的NH(3.00±±1.33 g kg),有机酸(7.66±±6.90 g kg)和HCN(2.01±±1.25 g kg),后者可能有助于卫星观测高浓度的HCN在亚洲季风上方的低空平流层。几种非生物质燃烧源也排放出少量的六氯环己烷。 BTEX化合物(苯,甲苯,乙苯,二甲苯)是粪便(约4.5 ggkg kg)和木质燃料(约1.5 ggkg kg)的主要排放物,一种简单的方法来估算室内暴露于许多测得的重要空气中毒是描述。沼气作为大约十种火炉燃料组合中最清洁的烹饪技术出现。焚烧农作物残渣产生了较高的氧化有机化合物(约12 g kg)和二氧化硫(2.54±1.09 g kg)。两种砖窑以煤为主要燃料共烧不同量的生物质,产生了相反的结果。锯齿形的窑炉主要以高效率燃烧煤炭,会产生大量的BC,HF,HCl和NO,卤化物的排放可能来自粘土。夹层窑(生物质燃料相对较多)产生的大多数单个有机气体量要大得多,大约是BrC的两倍,并且明显是已知的和可能的有机气溶胶前体。这两种窑炉都是重要的SO来源,其排放因子平均为12.8%±0.2%ggkg /千克。与以前的测量相比,混合垃圾燃烧产生的BC(3.3(±3.88 g kg)和BTEX(4.5 g kg)明显更多。对于所有化石燃料来源,柴油比汽油燃烧效率更高,但产生的NO和气溶胶排放因子更大。在采样效率最低的能源中,有在启动和空转期间使用汽油的摩托车,其CO EF约为700 g·kgkg左右,约为非典型生物质火的10倍。小型摩托车维修导致气态污染物的减少(如果有的话)最小,但减少了颗粒物的排放,详见随行论文(Jayarathne等人,2016)。小型汽油发电机和“驱虫火”也是污染物排放因子最高的来源。这些测量方法开始解决这些重要的,采样不足的数据源的关键数据缺口,但是由于它们的多样性和丰富性,需要做更多的工作。

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号