首页> 外文期刊>Atmospheric chemistry and physics >Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources
【24h】

Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

机译:尼泊尔环境监测和源测试实验(NAMaSTE):木材和粪便烹饪火,垃圾和农作物残渣燃烧,砖窑和其他来源的微量气体和吸光碳的排放

获取原文
           

摘要

The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April?2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870?nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF iB/isubscat/sub, EF iB/isubabs/sub, in?msup2/sup?kgsup?1/sup fuel burned), single scattering albedos (SSAs), and absorption ?ngstr?m exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g?kgsup?1/sup fuel burned). The trace gas measurements provide EFs (g?kgsup?1/sup) for COsub2/sub, CO, CHsub4/sub, selected non-methane hydrocarbons up to Csub10/sub, a large suite of oxygenated organic compounds, NHsub3/sub, HCN, NOsubix/i/sub, SOsub2/sub, HCl, HF, etc. (up to ~?80?gases in all). brbr The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63?±?0.68) was significantly higher than for wood-fuel cooking fires (3.01?±?0.10). Dung-fuel cooking fires also emitted high levels of NHsub3/sub (3.00?±?1.33?g?kgsup?1/sup), organic acids (7.66?±?6.90?g?kgsup?1/sup), and HCN (2.01?±?1.25?g?kgsup?1/sup), where the latter could contribute to satellite observations of high levels of HCN in the lower stratosphere above the Asian monsoon. HCN was also emitted in significant quantities by several non-biomass burning sources. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were major emissions from both dung- (~?4.5?g?kgsup?1/sup) and wood-fuel (~?1.5?g?kgsup?1/sup) cooking fires, and a simple method to estimate indoor exposure to the many measured important air toxics is described. Biogas emerged as the cleanest cooking technology of approximately a dozen stove–fuel combinations measured. Crop residue burning produced relatively high emissions of oxygenated organic compounds (~?12?g?kgsup?1/sup) and SOsub2/sub (2.54?±?1.09?g?kgsup?1/sup). Two brick kilns co-firing different amounts of biomass with coal as the primary fuel produced contrasting results. A zigzag kiln burning mostly coal at high efficiency produced larger amounts of BC, HF, HCl, and NOsubix/i/sub, with the halogenated emissions likely coming from the clay. The clamp kiln (with relatively more biomass fuel) produced much greater quantities of most individual organic gases, about twice as much BrC, and significantly more known and likely organic aerosol precursors. Both kilns were significant SOsub2/sub sources with their emission factors averaging 12.8?±?0.2?g?kgsup?1/sup. Mixed-garbage burning produced significantly more BC (3.3?±?3.88?g?kgsup?1&l
机译:2015年4月至2015年4月,在尼泊尔南部加德满都谷地及其周围以及印度南部恒河平原(IGP)开展了尼泊尔环境监测和源测试实验(NAMaSTE)。源表征阶段的目标是发展中世界广泛使用的许多重要但采样率低(通常效率低下)的燃烧源,例如使用各种炉灶和固体燃料烹饪,砖窑,城市固体废物的露天燃烧(又名垃圾或垃圾焚烧) ),作物残渣燃烧,发电机,灌溉泵和摩托车。 NAMaSTE首次或罕见地测量了气溶胶的光学性能,气溶胶质量以及详细的痕量气体化学成分,以测量许多来源的排放。本文报告了基于傅里叶变换红外(FTIR)光谱,全空气采样(WAS)和光声消光计(PAX; 405和870?nm)的痕量气体和气溶胶测量结果,该测量基于可移动实验室采样真实来源。报告的主要气溶胶光学特性包括散射系数和吸收系数(EF B scat ,EF B abs < / sub>,以?m 2 ?kg ?1 燃烧的燃料),单散射反照率(SSA)和吸收系数nstrum指数(AAE)表示。根据这些数据,我们估算出黑碳和棕碳(BC,BrC)的排放因子(燃烧的g?kg ?1 燃料)。痕量气体测量值可为CO 2 ,CO,CH 4 ,选定的非甲烷碳氢化合物提供EFs(g?kg ?1 ) C 10 ,大量氧化有机化合物,NH 3 ,HCN,NO x ,SO 2 ,HCl,HF等(总共最多〜80个气体)。 排放因光源而异,BrC和BC的光吸收对许多光源都很重要。粪便燃火的AAE(4.63±±0.68)明显高于燃木燃火的AAE(3.01±±0.10)。粪便燃料大火还排放出高水平的NH 3 (3.00?±?1.33?g?kg ?1 ),有机酸(7.66?±?6.90?g ?kg ?1 )和HCN(2.01?±?1.25?g?kg ?1 ),后者可能有助于卫星观测高水平的HCN。亚洲季风上方的低平流层。几种非生物质燃烧源也大量排放了六氯化碳。 BTEX化合物(苯,甲苯,乙苯,二甲苯)是粪便(〜?4.5?g?kg ?1 )和木材燃料(〜?1.5?g?kg )的主要排放物。 >?1 )的烹饪火,并介绍了一种简单的方法来估算室内暴露于许多测得的重要空气中的毒物。在大约十二种火炉燃料组合中,沼气成为最清洁的烹饪技术。焚烧农作物残渣产生了较高的含氧有机化合物(〜?12?g?kg ?1 )和SO 2 (2.54?±?1.09?g?kg < sup>?1 )。两种砖窑以煤为主要燃料共烧不同量的生物质,产生了截然不同的结果。锯齿形的窑炉大部分以煤炭为主要燃料,高效燃烧,产生大量的BC,HF,HCl和NO x ,其中卤化排放物可能来自粘土。夹式窑(具有相对更多的生物质燃料)产生大量的大多数单独的有机气体,大约是BrC的两倍,并且产生了更多的已知和可能的有机气溶胶前体。两种窑炉都是重要的SO 2 来源,其排放因子平均为12.8?±?0.2?g?kg ?1 。混合垃圾焚烧产生的BC显着增加(3.3?±?3.88?g?kg ?1&l

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号