首页> 外文OA文献 >A weather dependent approach to estimate the annual course of vegetation parameters for water balance simulations on the meso- and macroscale
【2h】

A weather dependent approach to estimate the annual course of vegetation parameters for water balance simulations on the meso- and macroscale

机译:一种基于天气的方法来估算植被参数的年变化,用于中尺度和宏观尺度的水平衡模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to simulate long-term water balances hydrologic models have to beparameterized for several types of vegetation. Furthermore, a seasonaldependence of vegetation parameters has to be accomplished for a successfulapplication. Many approaches neglect inter-annual variability and shifts dueto climate change. In this paper a more comprehensive approach fromliterature was evaluated and applied to long-term water balance simulations,which incorporates temperature, humidity and maximum bright sunshine hoursper day to calculate a growing season index (GSI). A validation of thisthreshold-related approach is carried out by comparisons with normalizeddifference vegetation index (NDVI) data and observations from thephenological network in the state of Lower Saxony. The annual courses of GSIand NDVI show a good agreement for numerous sites. A comparison withlong-term observations of leaf onset and offset taken from the phenologicalnetwork also revealed a good model performance. The observed trendsindicating a shift toward an earlier leaf onset of 3 days per decade in thelowlands were reproduced very well. The GSI approach was implemented in thehydrologic model Panta Rhei. For the common vegetation parameters like leafarea index, vegetated fraction, albedo and the vegetation height a minimumvalue and a maximum value were defined for each land surface class. Theseparameters were scaled with the computed GSI for every time step to obtain aseasonal course for each parameter. Two simulations were carried out each forthe current climate and for future climate scenarios. The first run wasparameterized with a static annual course of vegetation parameters. Thesecond run incorporates the new GSI approach. For the current climate bothmodels produced comparable results regarding the water balance. Althoughthere are no significant changes in modeled mean annual evapotranspirationand runoff depth in climate change scenarios, mean monthly values of thesewater balance components are shifted toward a lower runoff in spring andhigher values during the winter months.
机译:为了模拟长期水平衡,必须对几种类型的植被参数化水文模型。此外,必须成功实现植被参数的季节性依赖性。许多方法忽略了年际变化和气候变化引起的变化。在本文中,我们对来自文学的更全面的方法进行了评估,并将其应用于长期水平衡模拟,该模拟结合了温度,湿度和每天的最大日照小时数来计算生长季节指数(GSI)。通过与标准化差异植被指数(NDVI)数据进行比较以及从下萨克森州的物候网络中观察到的数据,对该阈值相关方法进行了验证。 GSI和NDVI的年度课程在众多场所都显示出良好的协议。与从物候网络中获取的叶片起伏和偏移的长期观察结果的比较也显示了良好的模型性能。在低地上观察到的趋势表明向低地每十年提前3天开始发病。 GSI方法在水文模型Panta Rhei中实施。对于常见的植被参数,如叶面积指数,植被分数,反照率和植被高度,为每个土地表面类别定义了最小值和最大值。对于每个时间步长,使用计算出的GSI对这些参数进行缩放,以获得每个参数的季节性变化。针对当前气候和未来气候情景分别进行了两次模拟。使用静态的植被参数年度过程对第一轮运行进行参数化。第二次运行采用了新的GSI方法。对于当前的气候,两个模型在水平衡方面都产生了可比的结果。尽管在气候变化情景中,模型化的平均年蒸散量和径流深度没有明显变化,但这些水平衡要素的月均值在春季向较低的径流转移,而在冬季则向较高的径流转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号