首页> 外文OA文献 >Band structure and charge carrier dynamics in (W,N)-codoped TiO 2 resolved by electrochemical impedance spectroscopy combined with UV–vis and EPR spectroscopies
【2h】

Band structure and charge carrier dynamics in (W,N)-codoped TiO 2 resolved by electrochemical impedance spectroscopy combined with UV–vis and EPR spectroscopies

机译:(W,n) - 耦合的TiO 2中的带结构和电荷载体动力学通过电化学阻抗光谱与UV-Vis和EPR光谱联合解决

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semiconductor photocatalysis is on the verge of (probably) its most important deployment and boost since the pioneering paper of Fujishima and Honda in 1972. Photo-generation of unbound excitons, i.e. separated conduction band electrons and valence band positive holes, is the fundamental primary process triggering charge separation in solid semiconductors necessary to initiate their photocatalytic activity. Immediately after being generated, charge carriers can undergo processes like recombination, trapping in mid-band-gap states or, paramount for photocatalytic processes, transfer to species adsorbed on the solid semiconductor surface. In TiO2 and doped TiO2, interfacial charge transfers are the slowest amongst the primary processes; therefore, electron (and hole) transfer most likely occurs from single electron traps (i.e. involving radical species). We report here on an effective approach combining electrochemical impedance spectroscopy with other spectroscopic techniques such as UV–vis and electron paramagnetic resonance. This approach allows deriving important information about band structure and following electron dynamics triggered by photon absorption. The redox potentials of the band edges and the influence of the dopants on the band structure are elucidated by electrochemical impedance spectroscopy combined with UV–vis spectroscopy. Electron dynamics are then studied using electron paramagnetic resonance spectroscopy, to elucidate the photochemical reactions at the basis of the photo-generated electron–hole pairs, and subsequent trapping and/or recombination. Results of a TiO2 sample containing W and N as dopants (0.1 at.% of W) highlight a narrowing of the intrinsic band gap of about 0.12 eV. The semiconductor visible light photochemistry is driven by diamagnetic donor states [NiO]‑, and [NiO]w‑ (formally NO3‑), from which electrons can be excited to the conduction band, generating EPR active paramagnetic [NiO] and [NiO]w states (formally NO2‑). The formation of W5 + electron trapping states, energetically more favourable than Ti3 + electron trapping states, is also identified.
机译:自1972年Fujishima和Honda的开创性论文以来,半导体光催化正处于(可能)最重要的部署和发展的边缘。未结合的激子的光生,即分离的导带电子和价带正空穴,是基本的主要过程。在固态半导体中触发电荷分离以启动其光催化活性。电荷载流子在生成后立即会经历诸如重组,中带隙态捕获或对于光催化过程至关重要的过程等过程,转移到吸附在固体半导体表面的物质上。在TiO2和掺杂的TiO2中,界面电荷转移在主要过程中是最慢的。因此,电子(和空穴)的转移最有可能发生在单个电子陷阱(即涉及自由基物质)上。我们在这里报告了一种有效的方法,该方法结合了电化学阻抗谱和其他光谱技术,例如UV-vis和电子顺磁共振。这种方法可以得出有关能带结构以及由光子吸收触发的电子动力学的重要信息。结合电化学阻抗谱和紫外可见光谱,可以阐明带边缘的氧化还原电势以及掺杂剂对带结构的影响。然后,利用电子顺磁共振波谱研究电子动力学,以阐明在光生电子-空穴对以及随后的俘获和/或重组基础上的光化学反应。含有W和N作为掺杂剂(占W的0.1 at。%)的TiO2样品的结果表明,本征带隙缩小了约0.12 eV。半导体可见光光化学由抗磁性施主态[NiO]-和[NiO] w-(正式为NO3-)驱动,电子可以从中激发到导带,从而产生EPR活性顺磁性[NiO]和[NiO] w表示(正式为NO2‑)。还确定了在能量上比Ti 3 +电子俘获状态更有利的W 5 +电子俘获状态的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号