首页> 外文OA文献 >Formally Verified Approximations of Definite Integrals
【2h】

Formally Verified Approximations of Definite Integrals

机译:正式验证了明确积分的近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Finding an elementary form for an antiderivative is often a difficult task, so numerical integration has become a common tool when it comes to making sense of a definite integral. Some of the numerical integration methods can even be made rigorous: not only do they compute an approximation of the integral value but they also bound its inaccuracy. Yet numerical integration is still missing from the toolbox when performing formal proofs in analysis. This paper presents an efficient method for automatically computing and proving bounds on some definite integrals inside the Coq formal system. Our approach is not based on traditional quadrature methods such as Newton-Cotes formulas. Instead, it relies on computing and evaluating antiderivatives of rigorous polynomial approximations, combined with an adaptive domain splitting. Our approach also handles improper integrals, provided that a factor of the integrand belongs to a catalog of identified integrable functions. This work has been integrated to the CoqInterval library.
机译:寻找反导体的基本形式通常是一项艰巨的任务,因此在谈到明确的积分方面时,数值集成已成为一个共同的工具。一些数字集成方法甚至可以严格地进行:它们不仅会计算积分值的近似,但它们也绑定了其不准确性。在进行分析中执行正式证明时,工具箱仍然缺少数值集成。本文介绍了一种有效的方法,用于在COQ正式系统内的某些明确积分上自动计算和证明范围。我们的方法不是基于传统的正交方法,如牛顿-Cotesformulas。相反,它依赖于计算和评估严格多项式近似的反导体,与自适应畴分裂组合。我们的方法还处理不正数的积分,只要积分的一个因素属于识别的可积函数的目录。这项工作已集成到CoqInterval图书馆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号