首页> 外文期刊>Journal of Automated Reasoning >Formally Verified Approximations of Definite Integrals
【24h】

Formally Verified Approximations of Definite Integrals

机译:正式验证的定积分近似值

获取原文
获取原文并翻译 | 示例

摘要

Finding an elementary form for an antiderivative is often a difficult task, so numerical integration has become a common tool when it comes to making sense of a definite integral. Some of the numerical integration methods can even be made rigorous: not only do they compute an approximation of the integral value but they also bound its inaccuracy. Yet numerical integration is still missing from the toolbox when performing formal proofs in analysis. This paper presents an efficient method for automatically computing and proving bounds on some definite integrals inside the Coq formal system. Our approach is not based on traditional quadrature methods such as Newton-Cotes formulas. Instead, it relies on computing and evaluating antiderivatives of rigorous polynomial approximations, combined with an adaptive domain splitting. Our approach also handles improper integrals, provided that a factor of the integrand belongs to a catalog of identified integrable functions. This work has been integrated to the CoqInterval library.
机译:寻找反导数的基本形式通常是一项艰巨的任务,因此,在理解定积分时,数值积分已成为一种常用工具。某些数字积分方法甚至可以变得更加严格:它们不仅计算积分值的近似值,而且还限制了积分值的不准确性。然而,在进行分析的形式证明时,工具箱中仍然缺少数值积分。本文提出了一种有效的方法,可以自动计算和证明Coq形式系统内某些定积分的边界。我们的方法不是基于传统的正交方法,例如牛顿-科茨公式。取而代之的是,它依赖于计算和评估严格多项式逼近的反导数,并结合自适应域划分。我们的方法还可以处理不正确的积分,条件是被积数的一个因数属于已识别可积函数的目录。这项工作已集成到CoqInterval库中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号