首页> 外文OA文献 >Design of elliptic curve cryptoprocessors over GF(2^163) using the Gaussian normal basis
【2h】

Design of elliptic curve cryptoprocessors over GF(2^163) using the Gaussian normal basis

机译:使用高斯正常基础设计GF(2 ^ 163)的椭圆曲线密码设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the efficient hardware implementation of cryptoprocessors that carry out the scalar multiplication kP over finite field GF(2163) using two digit-level multipliers. The finite field arithmetic operations were implemented using Gaussian normal basis (GNB) representation, and the scalar multiplication kP was implemented using Lopez-Dahab algorithm, 2-NAF halve-and-add algorithm and w-tNAF method for Koblitz curves. The processors were designed using VHDL description, synthesized on the Stratix-IV FPGA using Quartus II 12.0 and verified using SignalTAP II and Matlab. The simulation results show that the cryptoprocessors present a very good performance to carry out the scalar multiplication kP. In this case, the computation times of the multiplication kP using Lopez-Dahab, 2-NAF halve-and-add and 16-tNAF for Koblitz curves were 13.37 µs, 16.90 µs and 5.05 µs, respectively.
机译:本文介绍了使用两位数倍数倍增器执行CryptoprocessoR的高效硬件实现,该加密器在有限级GF(2163)上执行标量乘法Kp。使用高斯正常基础(GNB)表示实现了有限场算术运算,并且使用Lopez-Dahab算法,2-NAF半衰和添加算法和Koblitz曲线的W-TNAF方法来实现标量乘法Kp。使用Quartus II 12.0在Stratix-IV FPGA上合成的VHDL描述设计了处理器,并使用SignalTAP II和MATLAB验证。仿真结果表明,加密处理器呈现出非常好的性能来执行标量乘法Kp。在这种情况下,使用Lopez-Dahab,2-NaF Halve-And-Add和16-TNAF的倍增Kp的计算时间分别为13.37μs,16.90μs和5.05μs。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号