首页> 外文期刊>Circuits, Devices & Systems, IET >Gaussian normal basis multiplier over GF(2m) using hybrid subquadratic-and-quadratic TMVP approach for elliptic curve cryptography
【24h】

Gaussian normal basis multiplier over GF(2m) using hybrid subquadratic-and-quadratic TMVP approach for elliptic curve cryptography

机译:使用二次和二次TMVP混合方法对椭圆曲线加密的高斯正态基础乘积在GF(2 m )上

获取原文
获取原文并翻译 | 示例

摘要

In recent years, subquadratric-and-quadratric Toeplitz matrix-vector product (TMVP) computations are widely used for the implementation of binary field multiplication in elliptic curve cryptography. Pure subquadratric TMVP structure involves significantly less space complexity and long computational delay, while quadratric TMVP structure involves larger space complexity and less computation delay. To optimise the tradeoff between time and space complexities, this study presents a novel hybrid multiplier for Gaussian normal basis (GNB) in GF(2m) which combines subquadratic and quadratic structures. From the theoretical analysis, it is shown that the proposed hybrid multiplier can save ~18% space complexity and 12% time complexity than the existing GNB multiplier with pure TMVP decomposition.
机译:近年来,亚二次和二次Toeplitz矩阵向量乘积(TMVP)计算被广泛用于椭圆曲线密码术中二进制场乘法的实现。纯次二次TMVP结构所涉及的空间复杂度大大降低,并且计算延迟时间较长,而二次TMVP结构所涉及的空间复杂度更高,计算延迟也更短。为了优化时间和空间复杂度之间的权衡,本研究提出了一种新颖的混合乘数,该乘数结合了二次结构和二次结构,用于GF(2 m )中的高斯正态基础(GNB)。从理论分析可以看出,与现有的纯TMVP分解的GNB乘法器相比,提出的混合乘法器可以节省约18%的空间复杂度和12%的时间复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号