首页> 外文OA文献 >Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits
【2h】

Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits

机译:单细胞RNA-SEQ和机器学习揭示了用独特的监管电路的低级炎性单核细胞中的新型亚步骤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound which can reduce the inflammation caused by SD-LPS. To understand the gene regulatory networks of these processes, we have generated scRNA-seq data from mouse monocytes treated with these compounds and identified 11 novel cell clusters. We have developed a machine learning method to integrate scRNA-seq, ATAC-seq, and binding motifs to characterize gene regulatory networks underlying these cell clusters. Using guided regularized random forest and feature selection, our method achieved high performance and outperformed a traditional enrichment-based method in selecting candidate regulatory genes. Our method is particularly efficient in selecting a few candidate genes to explain observed expression pattern. In particular, among 531 candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally, we found two novel subpopulations of monocyte cells in response to SD-LPS and we confirmed our analysis using independent flow cytometry experiments. Our results suggest that our new machine learning method can select candidate regulatory genes as potential targets for developing new therapeutics against low grade inflammation.
机译:已知亚临床剂量的LPS(SD-LPS)导致单核细胞的低级炎症活化,这可能导致包括动脉粥样硬化和代谢综合征在内的炎症性疾病。 4-苯基丁酸钠是一种潜在的治疗化合物,可以减少由SD-LP引起的炎症。为了了解这些方法的基因调节网络,我们已经产生了用这些化合物处理的小鼠单核细胞的SCRNA-SEQ数据,并鉴定了11个新细胞簇。我们开发了一种机器学习方法,可集成ScrNA-SEQ,ATAC-SEQ和结合基序,以表征这些细胞簇的基因调节网络。采用引导正则化随机森林和特征选择,我们的方法实现了高性能,优于一种基于传统的富集的方法,在选择候选调节基因时。我们的方法特别有效地选择几个候选基因以解释观察到的表达模式。特别是,在531个候选TFS中,我们的方法实现了0.961的Auroc,只有10个图案。最后,我们发现响应于SD-LPS的单核细胞细胞的两种新亚族,并且我们使用独立的流式细胞术实验证实了我们的分析。我们的研究结果表明,我们的新机器学习方法可以选择候选调节基因作为开发新治疗药物的潜在目标,免受低级炎症。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号