首页> 外文OA文献 >Parallel MapReduce: Maximizing Cloud Resource Utilization and Performance Improvement Using Parallel Execution Strategies
【2h】

Parallel MapReduce: Maximizing Cloud Resource Utilization and Performance Improvement Using Parallel Execution Strategies

机译:并行MapReduce:使用并行执行策略最大限度地提高云资源利用率和性能改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

MapReduce is the preferred cloud computing framework used in large data analysis and application processing. MapReduce frameworks currently in place suffer performance degradation due to the adoption of sequential processing approaches with little modification and thus exhibit underutilization of cloud resources. To overcome this drawback and reduce costs, we introduce a Parallel MapReduce (PMR) framework in this paper. We design a novel parallel execution strategy of Map and Reduce worker nodes. Our strategy enables further performance improvement and efficient utilization of cloud resources execution of Map and Reduce functions to utilize multicore environments available with computing nodes. We explain in detail makespan modeling and working principle of the PMR framework in the paper. Performance of PMR is compared with Hadoop through experiments considering three biomedical applications. Experiments conducted for BLAST, CAP3, and DeepBind biomedical applications report makespan time reduction of 38.92%, 18.00%, and 34.62% considering the PMR framework against Hadoop framework. Experiments' results prove that the PMR cloud computing platform proposed is robust, cost-effective, and scalable, which sufficiently supports diverse applications on public and private cloud platforms. Consequently, overall presentation and results indicate that there is good matching between theoretical makespan modeling presented and experimental values investigated.
机译:MapReduce是大数据分析和应用程序处理中使用的首选云计算框架。目前地图框架框架由于采用了较好的修改而采用了顺序处理方法,因此表现出云资源的未充分利用,因此遭受性能下降。为了克服这种缺点并降低成本,我们在本文中介绍了一个并行MapReduce(PMR)框架。我们设计了映射的新颖并行执行策略,减少了工人节点。我们的策略使得进一步的性能改进和高效利用云资源执行地图和减少功能,以利用计算节点可用的多核环境。我们详细介绍了纸上PMR框架的Makespan建模和工作原理。通过考虑三种生物医学应用的实验将PMR的性能与Hadoop进行比较。考虑到Hadoop框架的PMR框架,对Blast,Cap3和Deepbind BioMedical应用进行的实验报告了薄皮普通减少了38.92%,18.00%和34.62%。实验结果证明了提出的PMR云计算平台是强大的,经济高效和可扩展,可充分支持公共和私有云平台上的各种应用。因此,整体呈现和结果表明,所提出的理论临床缺课建模与实验值之间存在良好的匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号