首页> 外文期刊>Concurrency and computation: practice and experience >An adaptive parallel execution strategy for cloud-based scientific workflows
【24h】

An adaptive parallel execution strategy for cloud-based scientific workflows

机译:基于云的科学工作流程的自适应并行执行策略

获取原文
获取原文并翻译 | 示例

摘要

Many of the existing large-scale scientific experiments modeled as scientific workflows are compute-intensive. Some scientific workflow management systems already explore parallel techniques, such as parameter sweep and data fragmentation, to improve performance. In those systems, computing resources are used to accomplish many computational tasks in high performance environments, such as multiprocessor machines or clusters. Meanwhile, cloud computing provides scalable and elastic resources that can be instantiated on demand during the course of a scientific experiment, without requiring its users to acquire expensive infrastructure or to configure many pieces of software. In fact, because of these advantages some scientists have already adopted the cloud model in their scientific experiments. However, this model also raises many challenges. When scientists are executing scientific workflows that require parallelism, it is hard to decide a priori the amount of resources to use and how long they will be needed because the allocation of these resources is elastic and based on demand. In addition, scientists have to manage new aspects such as initialization of virtual machines and impact of data staging. SciCumulus is a middleware that manages the parallel execution of scientific workflows in cloud environments. In this paper, we introduce an adaptive approach for executing parallel scientific workflows in the cloud. This approach adapts itself according to the availability of resources during workflow execution. It checks the available computational power and dynamically tunes the workflow activity size to achieve better performance. Experimental evaluation showed the benefits of parallelizing scientific workflows using the adaptive approach of SciCumulus, which presented an increase of performance up to 47.1%.
机译:建模为科学工作流的许多现有大型科学实验都是计算密集型的。一些科学的工作流管理系统已经探索了并行技术,例如参数扫描和数据分段,以提高性能。在那些系统中,计算资源用于在高性能环境(例如多处理器机器或集群)中完成许多计算任务。同时,云计算提供了可伸缩的弹性资源,可以在科学实验过程中按需实例化该资源,而无需其用户购买昂贵的基础架构或配置许多软件。实际上,由于这些优势,一些科学家已经在他们的科学实验中采用了云模型。但是,此模型也提出了许多挑战。当科学家们执行需要并行化的科学工作流程时,很难先验地确定要使用的资源量以及需要使用多长时间,因为这些资源的分配是灵活的并且基于需求。此外,科学家还必须管理新的方面,例如虚拟机的初始化和数据分级的影响。 SciCumulus是一种中间件,用于管理云环境中科学工作流的并行执行。在本文中,我们介绍了一种在云中执行并行科学工作流的自适应方法。该方法根据工作流执行期间资源的可用性进行调整。它检查可用的计算能力,并动态调整工作流活动大小以实现更好的性能。实验评估表明,使用SciCumulus的自适应方法可以并行处理科学工作流程,其性能可提高47.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号