首页> 外文期刊>Concurrency and Computation >A clustering based coscheduling strategy for efficient scientific workflow execution in cloud computing
【24h】

A clustering based coscheduling strategy for efficient scientific workflow execution in cloud computing

机译:基于集群的协同调度策略,可在云计算中高效执行科学的工作流

获取原文
获取原文并翻译 | 示例

摘要

Due to its advantages of cost-effectiveness, on-demand provisioning and easy for sharing, cloud computing has grown in popularity with the research community for deploying scientific applications such as workflows. Although such interests continue growing and scientific workflows are widely deployed in collaborative cloud environments that consist of a number of data centers, there is an urgent need for exploiting strategies which can place application datasets across globally distributed data centers and schedule tasks according to the data layout to reduce both latency and makespan for workflow execution. In this paper, by utilizing dependencies among datasets and tasks, we propose an efficient data and task coscheduling strategy that can place input datasets in a load balance way and meanwhile, group the mostly related datasets and tasks together. Moreover, data staging is used to overlap task execution with data transmission in order to shorten the start time of tasks. We build a simulation environment on Tianhe supercomputer for evaluating the proposed strategy and run simulations by random and realistic workflows. The results demonstrate that the proposed strategy can effectively improve scheduling performance while reducing the total volume of data transfer across data centers.
机译:由于其具有成本效益,按需配置和易于共享的优势,云计算在研究界中日益流行,用于部署工作流等科学应用程序。尽管这种兴趣持续增长,并且科学工作流已广泛部署在由多个数据中心组成的协作云环境中,但迫切需要利用可将应用程序数据集放置在全球分布的数据中心并根据数据布局安排任务的策略减少工作流程执行的等待时间和有效期。在本文中,通过利用数据集和任务之间的依赖性,我们提出了一种有效的数据和任务协同调度策略,该策略可以以负载平衡的方式放置输入数据集,同时将最相关的数据集和任务组合在一起。此外,数据分段用于将任务执行与数据传输重叠,以缩短任务的开始时间。我们在天河超级计算机上构建了一个仿真环境,以评估所提出的策略,并通过随机和现实的工作流运行仿真。结果表明,该策略可以有效地提高调度性能,同时减少跨数据中心的数据传输总量。

著录项

  • 来源
    《Concurrency and Computation》 |2013年第18期|2523-2539|共17页
  • 作者单位

    School of Computer, National University of Defense Technology, Changsha, Hunan 410073, P.R. China;

    School of Computer, National University of Defense Technology, Changsha, Hunan 410073, P.R. China;

    School of Computer, National University of Defense Technology, Changsha, Hunan 410073, P.R. China;

    Faculty of Information and Communication Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia;

    School of Information Technology, Deakin University, 221 Burwood Highway, Burwood, Vic 3125, Australia;

    Faculty of Engineering and Information Technology, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cloud computing; scientific workflow; coscheduling; data placement; data staging;

    机译:云计算;科学的工作流程;共同安排数据放置;数据暂存;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号