首页> 外文OA文献 >On the link between weighted least-squares and limiters used in higher-order reconstructions for finite volume computations of hyperbolic equations
【2h】

On the link between weighted least-squares and limiters used in higher-order reconstructions for finite volume computations of hyperbolic equations

机译:在用于双曲方程有限体积计算的高阶重构中使用的加权最小二乘法和限制器之间的链接

摘要

In this paper, a novel technique of obtaining high resolution, second order accurate, oscillation free, solution dependent weighted least-squares (SDWLS) reconstruction in finite volume method is explored. A link between the weights of the weighted least-squares based gradient estimation and various existing limiter functions used in variable reconstruction is established for one-dimensional problems for the first time. In this process, a class of solution dependent weights are derived from the link which is capable of producing oscillation free second order accurate solutions for hyperbolic systems of equations without the use of limiter function. The link also helps in unifying various independently proposed limiter functions available in the literature. The way to generate numerous new limiter functions from the link is demonstrated in the paper. An approach to verify TVD criterion of the SDWLS formulation for different choice of weights is explained. The present high resolution scheme is then extended to solve multi-dimensional problems with the interpretation of weights in SDWLS as influence coefficients. A few numerical test examples involving one- and two-dimensional problems are solved using three different new limiter functions in order to demonstrate the utility of the present approach.
机译:本文探讨了一种在有限体积方法中获得高分辨率,二阶准确度,无振动,依赖解的加权最小二乘(SDWLS)重构的新技术。首次针对一维问题建立了基于加权最小二乘的梯度估计的权重与变量重构中使用的各种现有限制器函数之间的联系。在此过程中,从链接中得出了一类依赖于解决方案的权重,该权重能够在不使用限制器函数的情况下为方程的双曲型系统生成无振动的二阶精确解。该链接还有助于统一文献中各种独立提出的限制器功能。本文演示了从链接生成大量新的限制器功能的方法。说明了一种验证SDWLS公式针对不同权重选择的TVD标准的方法。然后,将当前的高分辨率方案扩展为解决多维问题,并将SDWLS中的权重解释为影响系数。使用三个不同的新限制器函数解决了一些涉及一维和二维问题的数值测试示例,以证明本方法的实用性。

著录项

  • 作者

    MANDAL JC; SUBRAMANIAN J;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号