首页> 外文期刊>Computers & mathematics with applications >A high-order finite volume method with improved isotherms reconstruction for the computation of multiphase flows using the Navier-Stokes-Korteweg equations
【24h】

A high-order finite volume method with improved isotherms reconstruction for the computation of multiphase flows using the Navier-Stokes-Korteweg equations

机译:使用Navier-Stokes-Korteweg方程计算等温线的改进高阶有限体积方法

获取原文
获取原文并翻译 | 示例

摘要

In this work we solve the Navier-Stokes-Korteweg (NSK) equations to simulate a two-phase fluid with phase change. We use these equations on a diffuse interface approach, where the properties of the fluid vary continuously across the interface that separates the different phases. The model is able to describe the behavior of both phases with the same set of equations, and it is also able to handle problems with great changes in the topology of the problem. However, high-order derivatives are present in NSK equations, which is a difficulty for the design of a numerical method to solve the problem. Here, we propose the use of a high-order Finite Volume method with Moving Least Squares approximations to handle high-order derivatives and solve the NSK equations. Moreover, a new methodology to obtain accurate equations of state is presented. In this method, we use any accurate equation of state for the pure phases. Under the saturation curve, a B-spline reconstruction fulfilling a given set of thermodynamic criteria is performed. The new EOS can be used for computations using diffuse interface modeling. Several numerical examples to show the accuracy of the new approach are presented. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们解决了Navier-Stokes-Korteweg(NSK)方程,以模拟具有相变的两相流体。我们在扩散界面方法中使用这些方程式,其中流体的特性在分隔不同相的界面上连续变化。该模型能够用相同的方程组描述两个阶段的行为,并且还能够处理问题的拓扑结构发生较大变化的问题。但是,在NSK方程中存在高阶导数,这对于设计解决该问题的数值方法是困难的。在这里,我们建议使用带有移动最小二乘近似的高阶有限体积方法来处理高阶导数并求解NSK方程。此外,提出了一种获取精确状态方程的新方法。在这种方法中,我们对纯相使用任何精确的状态方程。在饱和曲线下,执行满足给定热力学标准的B样条重构。新的EOS可以用于使用扩散接口建模的计算。给出了几个数值示例来说明新方法的准确性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号