首页> 外文OA文献 >Surface EMG-based Surgical Instrument Classification for Dynamic Activity Recognition in Surgical Workflows
【2h】

Surface EMG-based Surgical Instrument Classification for Dynamic Activity Recognition in Surgical Workflows

机译:基于EMG的外科手术器械分类,用于手术工作流程中的动态活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a wearable-based recognition system for the classification of natural hand gestures during dynamic activities with surgical instruments. An armbandbased circular setup of eight EMG-sensors was used to superficially measure the muscle activation signals over the broadest cross-section of the lower arm. Instrument-specific surface EMG (sEMG) data acquisition was performed for 5 distinct instruments. In a first proof-of-concept study, EMG data were analyzed for unique signal courses and features, and in a subsequent classification, both decision tree (DTR) and shallow artificial neural network (ANN) classifiers were trained. For DTR, an ensemble bagging approach reached precision and recall rates of 0.847 and 0.854, respectively. The ANN network architecture was configured to mimic the ensemble-like structure of the DTR and achieved 0.952 and 0.953 precision and recall rates, respectively. In a subsequent multi-user study, classification achieved 70 % precision. Main errors potentially arise for instruments with similar gripping style and performed actions, interindividual variations in the acquisition procedure as well as muscle tone and activation magnitude. Compared to hand-mounted sensor systems, the lower arm setup does not alter the haptic experience or the instrument gripping, which is critical, especially in an intraoperative environment. Currently, drawbacks of the fixed consumer product setup are the limited data sampling rate and the denial of frequency features into the processing pipeline.
机译:我们在与手术器械的动态活动,引进自然手势的分类基于可佩戴识别系统。八个EMG传感器的armbandbased循环设置用于测量表面上在下部臂的最宽横截面的肌肉激活信号。 5点不同的仪器进行特定仪器的表面EMG(肌电)的数据采集。在第一个验证的概念研究,肌电图的数据进行了分析独特的信号课程和特色,并在随后的分类,无论是决策树(DTR)和浅层人工神经网络(ANN)分类进行了培训。对于DTR,合奏套袋方法分别达到了0.847和0.854,精确度和召回率。人工神经网络的网络架构分别被配置为模拟所述合奏状的DTR的结构,取得了0.952和0.953的精度和召回率。在随后的多用户的研究中,分类实现70%的精度。主要误差潜在地出现用于与所述获取过程中类似的抓握风格和执行的动作,个体间变化以及肌肉张力和活化大小仪器。相比手工安装的传感器系统中,下臂设置不改变的触觉体验或器械抓握,这是至关重要的,尤其是在手术中的环境。目前,固定消费产品设置的缺点是有限的数据采样率和频率特征的拒绝进入处理管线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号