首页> 外文OA文献 >Short-Term Load Forecasting Using Smart Meter Data: A Generalization Analysis
【2h】

Short-Term Load Forecasting Using Smart Meter Data: A Generalization Analysis

机译:使用智能仪表数据的短期负荷预测:泛化分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Short-term load forecasting ensures the efficient operation of power systems besides affording continuous power supply for energy consumers. Smart meters that are capable of providing detailed information on buildings energy consumption, open several doors of opportunity to short-term load forecasting at the individual building level. In the current paper, four machine learning methods have been employed to forecast the daily peak and hourly energy consumption of domestic buildings. The utilized models depend merely on buildings historical energy consumption and are evaluated on the profiles that were not previously trained on. It is evident that developing data-driven models lacking external information such as weather and building data are of great importance under the situations that the access to such information is limited or the computational procedures are costly. Moreover, the performance evaluation of the models on separated house profiles determines their generalization ability for unseen consumption profiles. The conducted experiments on the smart meter data of several UK houses demonstrated that if the models are fed with sufficient historical data, they can be generalized to a satisfactory level and produce quite accurate results even if they only use past consumption values as the predictor variables. Furthermore, among the four applied models, the ones based on deep learning and ensemble techniques, display better performance in predicting daily peak load consumption than those of others.
机译:短期负荷预测确保除了得到为能源消费者连续供电的电力系统的有效运作。智能电表是能够在各个建筑物等级短期负荷预测提供对建筑物能耗的详细信息,打开几个机会的大门。在当前的文件,4种机器学习方法已被用来预测日峰和住宅楼宇的每小时能耗。所使用的模型仅仅依赖于历史建筑的能源消耗和对以前未受过培训的配置文件进行评估。 ,发展缺乏外部信息,如天气数据驱动模型,建设数据是非常重要的根据情况的获得这些信息被限制或计算过程是昂贵的很明显。此外,该模型对独门独院型材业绩考核确定看不见的损耗谱的概括能力。上表明,如果模特们有足够的历史数据反馈,他们可以推广到令人满意的水平,并产生相当准确的结果,即使他们只使用过去的消耗值作为预测变量的几个英国房屋的智能电表数据进行了实验。此外,这四个应用模型中,基于深度学习和集合技术,那些显示在预测比其他的日最高负荷消耗更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号