首页> 外文期刊>Computer science >Poster abstract: grid-level short-term load forecasting based on disaggregated smart meter data
【24h】

Poster abstract: grid-level short-term load forecasting based on disaggregated smart meter data

机译:海报摘要:基于分解的智能电表数据的电网级短期负荷预测

获取原文
获取原文并翻译 | 示例

摘要

The rollout of smart meters and steadily increasing sample rates lead to a growing amount of raw data available for short-term load forecasting (STLF). While the original motivation for high resolutions has been the enabling of non-intrusive load monitoring (NILM), so far their value for STLF has been limited. We propose a novel approach, which allows the exploitation of high resolution data for STLF, by incorporating NILM and subsequent clustering of similarly behaving appliances as a preprocessing step.
机译:智能电表的推出以及不断提高的采样率导致可用于短期负荷预测(STLF)的原始数据数量不断增长。虽然高分辨率的最初动机是启用非侵入式负载监视(NILM),但到目前为止,它们对STLF的价值受到限制。我们提出了一种新颖的方法,该方法允许通过合并NILM和类似行为的设备的后续群集作为预处理步骤来利用STLF的高分辨率数据。

著录项

  • 来源
    《Computer science》 |2018年第2期|265-266|共2页
  • 作者单位

    Distributed Systems Group, Institute for Pervasive Computing, ETH Zurich, Universitaetstrasse 6, 8092 Zurich,Switzerland;

    Distributed Systems Group, Institute for Pervasive Computing, ETH Zurich, Universitaetstrasse 6, 8092 Zurich,Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    STLF; NILM; Clustering; Smart grid;

    机译:STLF;尼姆集群;智能电网;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号