首页> 外文OA文献 >Automatic Generation and Optimization of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm
【2h】

Automatic Generation and Optimization of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm

机译:使用混合杜鹃搜索和蜜蜂菌落算法自动生成和优化测试用例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Software testing is a very important technique to design the faultless software and takes approximately 60% of resources for the software development. It is the process of executing a program or application to detect the software bugs. In software development life cycle, the testing phase takes around 60% of cost and time. Test case generation is a method to identify the test data and satisfy the software testing criteria. Test case generation is a vital concept used in software testing, that can be derived from the user requirements specification. An automatic test case technique determines automatically where the test cases or test data generates utilizing search based optimization method. In this paper, Cuckoo Search and Bee Colony Algorithm (CSBCA) method is used for optimization of test cases and generation of path convergence within minimal execution time. The performance of the proposed CSBCA was compared with the performance of existing methods such as Particle Swarm Optimization (PSO), Cuckoo Search (CS), Bee Colony Algorithm (BCA), and Firefly Algorithm (FA).
机译:软件测试是设计无故障软件的一个非常重要的技术,并为软件开发大约需要大约60%的资源。它是执行程序或应用程序来检测软件错误的过程。在软件开发生命周期中,测试阶段的成本和时间的约60%。测试用例是一种识别测试数据并满足软件测试标准的方法。测试案例是软件测试中使用的重要概念,可以从用户要求规范中导出。自动测试盒技术自动确定测试用例或测试数据使用基于搜索的优化方法生成。在本文中,Cuckoo搜索和Bee菌落算法(CSBCA)方法用于优化测试用例和最小执行时间内的路径收敛的生成。将所提出的CSBCA的性能与现有方法的性能进行比较,例如粒子群优化(PSO),Cuckoo搜索(CS),蜜蜂菌落算法(BCA)和萤火虫算法(FA)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号