首页> 外文OA文献 >Automatic emphysema detection using weakly labeled HRCT lung images
【2h】

Automatic emphysema detection using weakly labeled HRCT lung images

机译:使用弱标记的HRCT肺图像自动肺气肿检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A method for automatically quantifying emphysema regions usingHigh-Resolution Computed Tomography (HRCT) scans of patients with chronicobstructive pulmonary disease (COPD) that does not require manually annotatedscans for training is presented. HRCT scans of controls and of COPD patientswith diverse disease severity are acquired at two different centers. Texturalfeatures from co-occurrence matrices and Gaussian filter banks are used tocharacterize the lung parenchyma in the scans. Two robust versions of multipleinstance learning (MIL) classifiers, miSVM and MILES, are investigated. Theclassifiers are trained with the weak labels extracted from the forcedexpiratory volume in one minute (FEV$_1$) and diffusing capacity of the lungsfor carbon monoxide (DLCO). At test time, the classifiers output a patientlabel indicating overall COPD diagnosis and local labels indicating thepresence of emphysema. The classifier performance is compared with manualannotations by two radiologists, a classical density based method, andpulmonary function tests (PFTs). The miSVM classifier performed better thanMILES on both patient and emphysema classification. The classifier has astronger correlation with PFT than the density based method, the percentage ofemphysema in the intersection of annotations from both radiologists, and thepercentage of emphysema annotated by one of the radiologists. The correlationbetween the classifier and the PFT is only outperformed by the secondradiologist. The method is therefore promising for facilitating assessment ofemphysema and reducing inter-observer variability.
机译:用于自动定量肺气肿区域usingHigh分辨率计算机断层扫描(HRCT)扫描患者的慢性阻塞性肺疾病(COPD),不要求手动的方法annotatedscans用于被呈现的训练。控件HRCT扫描和COPD patientswith不同疾病的严重程度在两个不同的中心收购。从共生矩阵和高斯滤波器组Texturalfeatures用于tocharacterize在扫描肺实质。 multipleinstance学习的两个强大的版本(MIL)分类,miSVM和英里,进行了研究。 Theclassifiers被训练与来自forcedexpiratory体积在一分钟内取出的微弱标签(FEV $ $ _1)和lungsfor一氧化碳(弥散)的扩散的能力。在测试时间,所述分类器输出一个指示patientlabel整体COPD诊断和本地标签指示肺气肿thepresence。的分类器性能与由两个放射科医师,一个经典的基于密度的方法,andpulmonary功能试验(的PFT)manualannotations比较。该miSVM分类对患者和肺气肿分类表现较好thanMILES。该分类与PFT astronger相关比基于密度的方法,在注释的来自放射科医师的交点的百分比ofemphysema和肺气肿由放射科医师的一个注解的thepercentage。该correlationbetween分类和PFT仅由secondradiologist跑赢。因此,该方法是有前途用于促进评估ofemphysema和减少观察者间的变异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号