首页> 外文OA文献 >Homotopy properties of horizontal loop spaces and applications to closed sub-Riemannian geodesics
【2h】

Homotopy properties of horizontal loop spaces and applications to closed sub-Riemannian geodesics

机译:卧式循环空间和应用于闭合子riemannian Geodesics的同型性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given a manifold $M$ and a proper sub-bundle $Deltasubset TM$, we studyhomotopy properties of the horizontal base-point free loop space $Lambda$,i.e. the space of absolutely continuous maps $gamma:S^1o M$ whose velocitiesare constrained to $Delta$ (for example: legendrian knots in a contactmanifold). A key technical ingredient for our study is the proof that the base-point map$F:Lambda o M$ (the map associating to every loop its base-point) is aHurewicz fibration for the $W^{1,2}$ topology on $Lambda$. Using this resultwe show that, even if the space $Lambda$ might have deep singularities (forexample: constant loops form a singular manifold homeomorphic to $M$), itshomotopy can be controlled nicely. In particular we prove that $Lambda$ (withthe $W^{1,2}$ topology) has the homotopy type of a CW-complex, that itsinclusion in the standard base-point free loop space (i.e. the space of loopswith no non-holonomic constraint) is a homotopy equivalence, and consequentlyits homotopy groups can be computed as $pi_k(Lambda)simeq pi_k(M) ltimespi_{k+1}(M)$ for all $kgeq 0.$ These topological results are applied, in the second part of the paper, tothe problem of the existence of closed sub-riemannian geodesics. In the generalcase we prove that if $(M, Delta)$ is a compact sub-riemannian manifold, eachnon trivial homotopy class in $pi_1(M)$ can be represented by a closedsub-riemannian geodesic. In the contact case, we prove a min-max result generalizing the celebratedLyusternik-Fet theorem: if $(M, Delta)$ is a compact, contact manifold, thenevery sub-riemannian metric on $Delta$ carries at least one closedsub-riemannian geodesic. This result is based on a combination of the abovetopological results with a delicate study of the Palais-Smale condition in thevicinity of abnormal loops (singular points of $Lambda$).
机译:给定歧管$ M $和适当的子包$ delta subset tm $,我们学习水平基点自由循环空间$ lambda $,i.e。绝对连续地图的空间$ gamma:s ^ 1 到m $的空间,其速度受约束为$ delta $(例如:在ContactManifold中的Legendrian结)。我们研究的一个关键技术成分是依据标准的证据,即 lambda 到M $(与其基点的每个循环关联的地图)是$ w ^ {1,2}的Ahurewicz求域$ lambda $上的$拓扑。使用这个结果我们表明,即使空间$ lambda $可能有深层奇点(forexample:恒定循环形成一个单数圆形homeomorphic到$ m $),可以很好地控制其血清素。特别是我们证明了$ lambda $(带有$ w ^ {1,2} $拓扑)具有CW-complex的同型类型的同型复杂,在标准的基点自由循环空间中(即Loopsts的空间没有非正式约束)是同型当量,因此可以计算同型同型偶像组( lambda) simeq pi_k(m) ltimity pi_ {k + 1}(m)$以满足所有$ k GEQ 0. $这些拓扑结果适用于本文的第二部分,封闭次黎曼测力学存在的问题。在GeneralCase中,我们证明,如果$(m, delta)$是一个紧凑的子riemannian歧管,则$ pi_1(m)$中的每个琐碎的同型类可以由lexingsub-riemannian geodesic表示。在联系案例中,我们证明了MIN-MAX结果概括了庆典QuetEnik-FET定理:如果$(m, delta)$是一个紧凑的,请联系歧管,Donyysys ob-riemannian urc on $ delta $携带至少一个leastsub -riemannian Geodesic。该结果基于缓解术后的组合,在异常环节($ Lambda $的奇点)的术中对Palais-Smale条件进行了微妙的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号