首页> 外文OA文献 >Sparse Bayesian ARX models with flexible noise distributions
【2h】

Sparse Bayesian ARX models with flexible noise distributions

机译:稀疏的贝叶斯ARX模型具有灵活的噪声分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers the problem of estimating linear dynamic system modelswhen the observations are corrupted by random disturbances with nonstandarddistributions. The paper is particularly motivated by applications where sensorimperfections involve significant contribution of outliers or wrap-aroundissues resulting in multi-modal distributions such as commonly encountered inrobotics applications. As will be illustrated, these nonstandard measurementerrors can dramatically compromise the effectiveness of standard estimationmethods, while a computational Bayesian approach developed here is demonstratedto be equally effective as standard methods in standard measurement noisescenarios, but dramatically more effective in nonstandard measurement noisedistribution scenarios.
机译:本文考虑了当观察结果估算的线性动态系统模型因与非标准的障碍而损坏的问题。本文特别激励了传感器焦点涉及异常值或包裹偶联的显着贡献,从而导致多模态分布,例如通常遇到的Inorobotics应用程序。如将被说明的,这些非标准测量误差可以显着损害标准估计方法的有效性,而这里开发的计算贝叶斯方法被证明在标准测量Noisescenarios中的标准方法同样有效,但在非标准测量触摸侦探情景中显着更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号