首页> 外文OA文献 >Short period PM2.5 prediction based on multivariate linear regression model
【2h】

Short period PM2.5 prediction based on multivariate linear regression model

机译:基于多变量线性回归模型的短时段PM2.5预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multivariate linear regression model was proposed to achieve short period prediction of PM2.5 (fine particles with an aerodynamic diameter of 2.5 μm or less). The main parameters for the proposed model included data on aerosol optical depth (AOD) obtained through remote sensing, meteorological factors from ground monitoring (wind velocity, temperature, and relative humidity), and other gaseous pollutants (SO2, NO2, CO, and O3). Beijing City was selected as a typical region for the case study. Data on the aforementioned variables for the city throughout 2015 were used to construct two regression models, which were discriminated by annual and seasonal data, respectively. The results indicated that the regression model based on annual data had (R2 = 0.766) goodness-of-fit and (R2 = 0.875) cross-validity. However, the regression models based on seasonal data for spring and winter were more effective, achieving 0.852 and 0.874 goodness-of-fit, respectively. Model uncertainties were also given, with the view of laying the foundation for further study.
机译:提出了一种多元线性回归模型来实现的PM2.5短期预测(微粒具有2.5的空气动力学直径微米或更小)。对于所提出的模型的主要参数包括监控通过遥感获得关于气溶胶光学厚度(AOD)的数据,从地面气象因素(风速,温度和相对湿度),以及其他气态污染物(SO2,NO2,CO,和O3 )。北京城市被选定为案例研究的典型区域。数据对整个2015年全市上述变量被用来构造两个回归模型,这是由年度和季度数据区分,分别。结果表明,基于年度数据回归模型具有(R2 = 0.766)拟合优度的配合和(R2 = 0.875)交叉有效性。然而,基于对春季和冬季季节性数据的回归模型更有效,分别达到0.852和0.874优度拟合。模型的不确定性也分别给予,与奠定了进一步研究的基础的观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号