首页> 外文期刊>International journal of applied evolutionary computation >Applications of SVR-PSO Model and Multivariate Linear Regression Model in PM2.5 Concentration Forecasting
【24h】

Applications of SVR-PSO Model and Multivariate Linear Regression Model in PM2.5 Concentration Forecasting

机译:SVR-PSO模型和多元线性回归模型在PM2.5浓度预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

At present, the fog and haze problem is intensified, which has a great impact on the production of enterprises and living of the residents. PM2.5 is an important indicator of air pollution and it also receives much concern. This article collects the reliable data of PM2.5 in the five industrial cities in Henan Province from Weather Report Network, and PM2.5 Data Network since 2015. The effective approaches to forecast PM2.5 concentration is proposed, i.e., the improved multivariate linear regression (namely IMLR) model and support vector regression with particle swarm optimization algorithm (namely SVR-PSO) model. The empirical results demonstrate that the proposed IMLR and SVR-PSO forecasting models are effective, and also, could be an instructive reference for weather quality forecasting, safe travel, and safe production.
机译:目前,雾霾问题加剧,对企业生产和居民生活产生重大影响。 PM2.5是空气污染的重要指标,也引起了很多关注。本文从气象报告网和2015年以来的PM2.5数据网收集了河南省五个工业城市PM2.5的可靠数据。提出了预测PM2.5浓度的有效方法,即改进的多元线性回归(即IMLR)模型,并通过粒子群优化算法(即SVR-PSO)模型支持向量回归。实证结果表明,所提出的IMLR和SVR-PSO预报模型是有效的,并且可以为天气预报质量,安全出行和安全生产提供指导性参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号