首页> 外文OA文献 >Data-driven Transient Stability Assessment Model Considering Network Topology Changes via Mahalanobis Kernel Regression and Ensemble Learning
【2h】

Data-driven Transient Stability Assessment Model Considering Network Topology Changes via Mahalanobis Kernel Regression and Ensemble Learning

机译:通过Mahalanobis内核回归和集合学习,考虑网络拓扑改变的数据驱动的瞬态稳定性评估模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transient stability assessment (TSA) is of great importance in power system operation and control. One of the usual tasks in TSA is to estimate the critical clearing time (CCT) of a given fault under the given network topology and pre-fault power flow. Data-driven methods try to obtain models describing the mapping between these factors and the CCT from a large number of samples. However, the influence of network topology on CCT is hard to be analyzed and is often ignored, which makes the models inaccurate and unpractical. In this paper, a novel data-driven TSA model combining Mahalanobis kernel regression and ensemble learning is proposed to deal with the problem. The model is a weighted sum of several sub-models. Each sub-model only uses the data of one topology to construct a kernel regressor. The weights are determined by both the topological similarity and numerical similarity between the samples. The similarities are decided by the parameters in Mahalanobis distance, and the parameters are to be trained. To reduce the model complexity, sub-models within the same topology category share the same parameters. When estimating CCT, the model uses not only the sub-model which the sample topology belongs to, but also other sub-models. Thus, it avoids the problem that there may be too few data under some topologies. It also efficiently utilizes information of data under all the topologies. Moreover, its decision-making process is clear and understandable, and an effective training algorithm is also designed. Test results on both the IEEE 10-machine 39-bus and a real system verify the effectiveness of the proposed model.
机译:瞬态稳定性评估(TSA)在电力系统运行和控制方面具有重要意义。 TSA中的一个通常的任务是估算给定的网络拓扑和预故障电流下给定故障的关键清算时间(CCT)。数据驱动方法尝试获取描述这些因素与CCT之间的映射的模型。然而,难以分析网络拓扑对CCT的影响,并且通常被忽略,这使得模型不准确和不可思议。在本文中,提出了一种新的数据驱动TSA模型,组合Mahalanobis核心回归和集合学习来处理问题。该模型是几个子模型的加权和。每个子模型仅使用一个拓扑的数据来构建内核回归。权重由样品之间的拓扑相似性和数值相似度决定。相似之处由Mahalanobis距离中的参数决定,参数将被训练。为了减少模型复杂性,同一拓扑类别内的子模型共享相同的参数。估计CCT时,该模型不仅使用样本拓扑所属的子模型,而且使用其他子模型。因此,它避免了在某些拓扑下可能存在太少的数据。它还有效地利用所有拓扑下的数据信息。此外,其决策过程是清晰可理解的,并且还设计了一种有效的训练算法。 IEEE 10机器39总线和真实系统上的测试结果验证了所提出的模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号