首页> 外文OA文献 >Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model
【2h】

Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model

机译:用核心逻辑回归模型进行综合整体分形维数评估滑坡易感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main aim of this study was to compare and evaluate the performance of fractal dimension as input data in the landslide susceptibility mapping of the Baota District, Yan’an City, China. First, a total of 632 points, including 316 landslide points and 316 non-landslide points, were located in the landslide inventory map. All points were divided into two parts according to the ratio of 70%:30%, with 70% (442) of the points used as the training dataset to train the models, and the remaining, namely the validation dataset, applied for validation. Second, 13 predisposing factors, including slope aspect, slope angle, altitude, lithology, mean annual precipitation (MAP), distance to rivers, distance to faults, distance to roads, normalized differential vegetation index (NDVI), topographic wetness index (TWI), plan curvature, profile curvature, and terrain roughness index (TRI), were selected. Then, the original numerical data, box-counting dimension, and correlation dimension corresponding to each predisposing factor were calculated to generate the input data and build three classification models, namely the kernel logistic regression model (KLR), kernel logistic regression based on box-counting dimension model (KLRbox-counting), and the kernel logistic regression based on correlation dimension model (KLRcorrelation). Next, the statistical indexes and the receiver operating characteristic (ROC) curve were employed to evaluate the models’ performance. Finally, the KLRcorrelation model had the highest area under the curve (AUC) values of 0.8984 and 0.9224, obtained by the training and validation datasets, respectively, indicating that the fractal dimension can be used as the input data for landslide susceptibility mapping with a better effect.
机译:本研究的主要目的是比较和评估分形维数作为中国延安市延缓敏感性映射中的输入数据的表现。首先,总共632点,包括316个山体滑坡点和316个非滑坡点,位于滑坡库存地图中。所有点按照70%:30%的比例分为两部分:30%,其中70%(442)点用作训练模型的训练模型,以及剩余的,即验证数据集,应用于验证。其次,13个概述因素,包括斜坡方面,斜坡角度,高度,岩性,平均年降水量(地图),到河流的距离,距离故障,距离道路距离,常规差分植被指数(NDVI),地形湿度指数(TWI) ,选择曲率,轮廓曲率和地形粗糙度指数(TRI)。然后,计算原始数值数据,框计数维度和与每个概述因子对应的相关维度以生成输入数据并构建三个分类模型,即基于框的内核逻辑回归模型(KLR),内核逻辑回归 - 计算维度模型(KLRBOX计数),以及基于相关维模型的内核逻辑回归(KLRCORRELATION)。接下来,采用统计指标和接收器操作特征(ROC)曲线来评估模型的性能。最后,Klrcorrelization模型的曲线(AUC)值下的最高面积为0.8984和0.9224,分别由训练和验证数据集获得,表明分形尺寸可以用作LOST的滑坡敏感性映射的输入数据影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号