首页> 外文OA文献 >Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction
【2h】

Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction

机译:在单步最佳线性无偏见预测中的全国性典型,基因组和谱系数据整合的计算策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The single-step genomic BLUP (SSGBLUP) is a method that can integrate pedigree and genotypes at molecular markers in an optimal way. However, its present form (regular SSGBLUP) has a high computational cost (cubic in the number of genotyped animals) and may need extensive rewriting of genetic evaluation software. In this work, we propose several strategies to implement the single step in a simpler manner. The first one expands the single-step mixed-model equations to obtain equivalent equations from which the regular (including pedigree and records only) mixed-model equations are a subset. These new equations (unsymmetric extended SSGBLUP) have low computational cost, but require a nonsymmetric solver such as the biconjugate gradient stabilized method or successive underrelaxation, which is a variant of successive overrelaxation, with a relaxation factor lower than 1. In addition, we show a new derivation of the single-step method, which includes, as an extra effect, deviations from strictly polygenic breeding values. As a result, the same set of equations as above is obtained. We show that, whereas the new derivation shows apparent problems of nonpositive definiteness for certain covariance matrices, a proper equivalent model including imaginary effects always exists, leading always to the regular SSGBLUP mixed model equations. The system of equations can be solved (iterative SSGBLUP) by iterating between a pedigree and records evaluation and a genomic evaluation (each one solved by any iterative or direct method), whereas global iteration can use a block version of successive underrelaxation, which ensures convergence. The genomic evaluation can explicitly include marker or haplotype effects and possibly involve nonlinear (e.g., Bayesian by Markov chain Monte Carlo) methods. In a simulated example with 28,800 individuals and 1,800 genotyped individuals, all methods converged quickly to the same solutions. Using existing efficient methods with limited memory requirements to compute the products Gt and A22t for any t (where G and A22 are genomic and pedigree relationships for genotyped animals, and t is a vector), all strategies can be converted to iteration on data procedures for which the total number of operations is linear in the number of animals + number of genotyped animals × number of markers.
机译:单步基因组Blup(SSGBLUP)是一种方法,可以以最佳方式在分子标记处整合谱系和基因型。然而,其目前的形式(常规SSGBLUP)具有高计算成本(基因分型动物的立方),可能需要大量重写遗传评估软件。在这项工作中,我们提出了几项策略以更简单的方式实施单一步骤。第一一个扩展了单步混合模型方程以获得相同的方程,常规(包括谱系和记录仅)混合模型方程是子集。这些新的等式(未对称扩展SSGBLUP)的计算成本低,但需要一个非对称求解器,例如双缀合物梯度稳定的方法或连续次额外的抑制性,这是连续过度的变体,弛豫系数低于1.此外,我们展示单步方法的新推导,包括额外效应,与严格的多种子育值的偏差。结果,获得与上述相同的等式集。我们展示了这一点,而新的衍生表明某些协方差矩阵的非积极明确的表观问题,而某些协方差矩阵的存在问题,则始终存在一个适当的等效模型,包括虚构效果,始终引导常规的SSGBLUP混合模型方程。可以通过迭代谱系和记录评估和基因组评估(通过任何迭代或直接方法解决的每个组织)来解决方程系统(迭代SSGBLUP),而全球迭代可以使用连续额外的块版本,这确保了收敛。基因组评价可以明确地包括标记或单倍型效应,并且可能涉及非线性(例如,Markov链蒙特卡罗的贝叶斯)方法。在具有28,800个个体和1,800个基因分类个体的模拟示例中,所有方法都会迅速收敛到相同的解决方案。使用具有有限内存要求的现有有效方法来计算任何T的产品GT和A22T(其中G和A22是基因组和基因分型动物的基因组关系,而T是载体),所有策略都可以转换为迭代数据程序的迭代在动物+基因分型动物的数量×标记数量的数量中,操作总数是线性的。

著录项

  • 作者

    A. Legarra; V. Ducrocq;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号