首页> 外文OA文献 >Classification of pavement climatic regions through unsupervised and supervised machine learnings
【2h】

Classification of pavement climatic regions through unsupervised and supervised machine learnings

机译:通过无监督和监督机器学习对路面气候区分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract This study extracted 16 climatic data variables including annual temperature, freeze thaw, precipitation, and snowfall conditions from the Long-term Pavement Performance (LTPP) program database to evaluate the climatic regionalization for pavement infrastructure. The effect and significance of climate change were firstly evaluated using time as the only predictor and t-test. It was found that both the temperature and humidity increased in most States. Around one third of the 800 weather stations record variation of freeze and precipitation classifications and a few of them show significant change of classifications over time based on the results of logistic regression analyses. Three unsupervised machine learning including Principle Component Analysis (PCA), factor analysis and cluster analysis were conducted to identify the main component and common factors for climatic variables, and then to classify datasets into different groups. Then, two supervised machine learning methods including Fisher’s discriminant analysis and Artificial Neural Networks (ANN) were adopted to predict the climatic regions based on climatic data. Results of PCA and factor analysis show that temperature and humidity are the first two principle components and common factors, accounting for 71.6% of the variance. The 4-means clusters include wet no freeze, dry no freeze, dry freeze and snow freeze. The best k-mean clustering suggested 9 clusters with more temperature clusters. Both the Fisher’s linear discriminant analysis and ANN can effectively predict climatic regions with multiple climatic variables. ANN performs better with higher R square and low misclassification rate, especially for those with more layers and nodes.
机译:摘要本研究提取了16个气候数据变量,包括从长期路面性能(LTPP)计划数据库的年度温度,冻融,降水和降雪条件,以评估路面基础设施的气候区域化。首先使用时间作为唯一的预测因子和T检验评估气候变化的效果和意义。发现大多数州的温度和湿度都增加。在800个气象站的左右三分之一的冻结和降水分类的变化以及它们中的一些基于Logistic回归分析结果随着时间的推移显示出分类的重大变化。进行三种无监督机器学习,包括原理分量分析(PCA),因子分析和集群分析,以确定气候变量的主要成分和常见因素,然后将数据集分类为不同的组。然后,采用了两个监督机器学习方法,包括Fisher判别分析和人工神经网络(ANN)来基于气候数据预测气候区域。 PCA和因子分析的结果表明,温度和湿度是前两个主要成分和常见因素,占差异的71.6%。 4分簇簇包括湿无冻结,干燥无冻结,干燥冷冻和雪冻结。最好的k平均聚类建议具有更多温度簇的9个簇。 Fisher的线性判别分析和ANN都可以有效地预测多气候变量的气候区域。 ANN以更高的R平方和低分类率来表现更好,特别是对于具有更多层和节点的人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号