首页> 外文OA文献 >Hardy Type Asymptotics for Cosine Series in Several Variables with Decreasing Power-Like Coefficients
【2h】

Hardy Type Asymptotics for Cosine Series in Several Variables with Decreasing Power-Like Coefficients

机译:几个变量中余弦系列的Hardy型渐近学,电源状系数减少

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The investigation of the asymptotic behavior of trigonometric series near theorigin is a prominent topic in mathematical analysis. For trigonometric seriesin one variable, this problem was exhaustively studied by various authors in aseries of publications dating back to the work of G. H. Hardy, 1928. Trigonometric series in several variables have got less attention. The aim ofthe work is to partially fill this gap by finding the asymptotics oftrigonometric series in several variables with the terms, having a form of `oneminus the cosine' up to a decreasing power-like factor: [sum_{zinmathbb{Z}^{d}setminus{0}}rac{1}{|z|^{d+lpha}}left(1-coslanglez,hetaangleight), qquad hetainmathbb{R}^{d}, ] where$langlecdot,cdotangle$ is the standard inner product and $|cdot|$ isthe max-norm on $mathbb{R}^{d}$. The approach developed in the paper is quite elementary and essentiallyalgebraic. It does not rely on the classic machinery of the asymptotic analysissuch as slowly varying functions, Tauberian theorems or the Abel transform.However, in our case, it allows to obtain explicit expressions for theasymptotics and to extend to the general case $dge 1$ classical results of G.H. Hardy and other authors known for $d=1$.
机译:在原点附近的三角级数渐近行为的研究是数学分析中的一个重要课题。对于一个变量中的三角序列,许多作者早在1928年G.H. Hardy的著作中就对该问题进行了详尽的研究。在几个变量中的三角序列受到的关注较少。这项工作的目的是通过在几个变量中找到带有这些项的三角级数的渐近性,从而部分填补这一空白,其形式为“减余弦”,直至递减的似幂因子: [ sum_ {z in mathbb {Z} ^ {d} setminus {0 }} frac {1} { | z | ^ {d + alpha}} left(1- cos langlez, theta rangle right ), qquad theta in mathbb {R} ^ {d},]其中,$ langle cdot, cdot rangle $是标准内积,而$ | cdot | $是最大范数在$ mathbb {R} ^ {d} $上。本文开发的方法是相当基本的,基本上是代数的。它不依赖于渐进分析的经典机制,例如缓慢变化的函数,Tauberian定理或Abel变换,但是在我们的案例中,它允许获得渐近性的显式表达式并将其扩展为一般情况$ d ge 1 $ GH的经典结果Hardy和其他作者以$ d = 1 $而著称。

著录项

  • 作者

    Victor Kozyakin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号